PMCo001d

PMC
Programmable Motion Controller

(including MPL version 3.0)

Installation & Operation Manual
PMCO001d

Copyright (c) 1987
Ormec Systems Corp.

All rights reserved

19 Linden Park
Rochester, NY 14625

PMC001d.87.02.16

ORMEC

0.0 TABLE OF CONTENTS
TABLE OF CONTENTS
4‘ GENERAL DESCRIPTION . . © & v v v vt e et e e e et e e e e e e e 5
- 1.1 INTRODUCTION . . . o e e e e e e e e e e e e e e e s e e e e e e e e 5
1.2 STAND ALONE OPERATION« v v v v e v e v e et e e e e e e 6
1.3 PROGRAMMABLE CONTROLLER HOSTED OPERATION. 6
1.4 COMPUTER HOSTED OPERATION o o o o v v v v v v v v o v 7
1.5 SIGNAL NAMING CONVENTIONS o o« vt v vt v v v v e e 7
1.6 COMPARISON OF SERVOS AND STEPPING MOTORS 7
1.7SYSTEM INTERFACE o i i e ittt e e e e e e e e e e e e e e e 8
THEQRY OF OPERATION ot v v v v v e et e o e e e e e e e e e e e 9
2.1 INTRODUCTION . . W ot v e i e e e e e e e e e e s e e e e e e e e e e e e e 9
2.2 SYSTEM ARCHITECTURE OVERVIEW« .« v v v v v v oo o 9
2.2.1 Incremental Position Encoder« . v o 0 st e e e e e 9
222 Encoder INterface 4 e 9
2.2.3 Summing and Compensation Circuitry« . . o« oo 10
224 Modes of OPeration« « « « o e b e e e e e e e e e e e e 10
2.2.5 Operation OVEIVIEW+« v« v v e ot e e e e e e e e 11
2.3 MOTION PROGRAMMING LANGUAGE ARCHITECTURE 11
2.3.1 MOTION Commands and Terminators « « . « « « o ¢ « o o o . . 13
532 SYNCHRONIZATION AND INTERFACE Commands and Terminators 16
2.3.3 PROGRAM Commands and Terminators « . « « « « . o o« . . 17
234 Error Codes . . v v v o e 19
SPECIFICATIONS « « o v o0 o v e 20.
3.1 GENERAL SPECIFICATIONS ¢« vt v v v et oo e e e e e e e e 20
: . 3.2 SYSTEM AXIS INTERFACE SPECIFICATIONS« .« v v v v v v 20
3.3 SERIAL COMMUNICATIONS INTERFACE SPECIFICATIONS 21
3.4 MOTOR LOOP INTERFACE SPECIFICATIONS.« v oo v v v 21
3.5 MACHINE I/0 INTERFACE SPECIFICATIONS. « .« oo v v v 22
3.6 MECHANICAL AND ENVIRONMENTAL SPECIFICATIONS 23
INSTALLATION &t v v v v v e e e e v e e e e e e e e e e e e e e e e e e e 24
4.1 INTRODUCTION i v e v it v e 24
42 SYSTEM AXIS INTERFACE (TM2). o . v v v v v v v v oo e oo e e 2
4.3 SERIAL COMMUNICATIONS INTERFACE (JM2)« . 25
4.4 MOTOR LOOP INTERFACE (TM1) o o o oo v v v oo e e 2
4.5 MACHINE IO INTERFACE (JM1). =« . o o v v o v v e 27
4.6 PMC CONFIGURATION JUMPERS« .« o o v v v v oo 32
4.6.1 Assigning Axis-ID (Header J6) 32
4.6.2 Serial Communications Hardware Configuration (Header J5) 33
4.6.2.1 RS-232 DCE Communications (Default)« .« . 33
4.6.2.2 RS-422 DCE Communications. « - « « « « + o o o« o o o 33
4.6.2.3 RS-232 DCE (No Handshake) Communications. 33
4.6.2.4 Other Communications Configurations« -« . .. 33
4.6.3 Feedforward and External Velocity Reference Selection (Header Jn ..o 34
4.6.4 Daughter Board Connector (Header JM4)o v 34
4.6.5 Motion Reference Bus Selection (Header JM20) 34
GETTING STARTED« o v e et e e e e e e e e e e e e e e e e e 35
5 1 POWERING UP AND ESTABLISHING COMMUNICATIONS 35
. 53 SAMPLE MPL ROUTINES . . .« « o o it e e e e e e e e 36
5.3 EDITING THE PROGRAM BUFFER o« o o v oo e e e e e 38
54 TUNING THE PMC o v o o o e e e e e e e e e e e e e e e e e e 39

PMcCoo01d -2- ORMEC

0.0 TABLE OF CONTENTS
5.4.1 Adjusting the Velocity Loop Gain oo 39
5.4.2 Adjusting the Velocity Loop Integral + Proportional Compensator 40
5.4.3 Adjusting the Position Loop Gaino e 4]
5.4.4 Adjusting the Velocity Feedforward Gain 41
5.4.5 Adjusting the Position Loop Integral + Proportional Compensator 41

5.5 PUTTING CONFIGURATION COMMANDS IN A POWERUP ROUTINE 42
5.6 LASER MILLING APPLICATION v v v e o v v v v e e e e e 44
OPERATION . . .t v vttt et e e e e e e e e e e e e e e e " 46
6.1 MPL COMMAND OVERVIEWttt v v et e e et e e e e e e e s 46
6.1.1 MPL Break Features « « « « o o o o o o o o o o o o o v v o o o o o o o 47

6.2 MPL SYNTAX OVERVIEW i 0 v v v e e e e e e e e e e e e e e 48
6.3 SETUP PARAMETER RANGES, DEFAULTSANDUNITS 51
6.4 EDITING FUNCTIONS USED DURING PROGRAMMODE 52
6.5 STATUS REGISTERS . . & v v ¢ v o v vt v e e e e et o e e e e e e e e e e e e 52
6.6 MACHINE I/OOPERATION o v v v v vt e i e et e e e e e e 58
6.6.1 General Purpose Machine Inputs oo 58
6.6.2 Special Purpose Machine Inputso 58
663 Machine OULPULS . . . « v « & o + &t v e o o o o o e e e e e e e e e 58
6.6.4 Other Discrete /O Options« o v« v« o o v v b e e e e e 58

6.7 MULTI-AXIS COMMUNICATIONS USING THE SERIAL COMMUNICATIONS BUS . 59
6.7.1 Using Serial Bus Communications« ¢ o o o o 59
6.7.2 Assigning an Axis-ID from the Serial Communications Interface 60

6.8 MOTION REFERENCE BUS v i v vt e e e et 61
6.9 MPL COMMAND DESCRIPTION.« o« o v v v v i v oo 62
6.9.1 @ - Program Label Command o oo 62
692 A - Acceleration Command.« « . .ot e e e e e e . 63
6.9.3 B - Branch (GoTo) Command e e e e e e e e e e e 64
694 C-Contour Command &« v o« o o« e e e e e e e e e 65
69.5 D-DelayCommand « .« v v ot e bt e e e e e 66
696 E-ExitCommand. ¢ v v« v v o e e e e e e e e e e e e e e e 67
697 F - Function Command ¢ ¢ ¢ ¢« o o o o o o u e e e e e e e e e 68
698 G-GoCommand v 4 e b e e e e e e e e e e e e e e e e e e 69
699 H-Home Command ¢ .« v v o o o o o v o o o o et e e 70
69.10 I -Index Command « « « « « v s o e e e e e e e e e 71
69.11 J-Jog Commando h e e e 72
69.12 K - Kill Command ¢t v o v et e e e e e e e e e e e e 73
69.13L - Loop Command o e e e e e e e e e e 73
6.9.14 N - Normalize Command. « o « o v o o vt ot o 75
6.9.14a NC - Checksum on Non-volatile memory « . . « « o oo - 75
6.9.150 - OQutput Commando . e e e e 76
6.9.16 P - Program Command. e o e e e e 77
6.9.16a P - Binary Programming Command 77
69.17 S-Setor Show Command. « « « « « v o oo e 78
69.17aSB -SetBaud Rateo e oo e e e 78
6.9.17b SC - Show System Condition Inputs« . . o0 79
6.9.17¢c SL - Set Overtravel Limit Options« .« o o oo e 79
6.9.17d SM - Set System Modeo e e e e e e e e e 80
6.9.17e SP - Show Last Label Passed « .« « « o o« o oo 81
6.9.17f SS - Show System Status. « « o o . . . s s e e 81
6.9.17g ST - Set Program Trace Option« oo oo 82
6.9.17h SW - Set Program Buffer Write Enable 82
69171 SX - Set X Status Register.o 83
6.9.17j SY - Set Y Status Register.o 84
6.9.17k SZ - Set Z Status Registero e 85
6.9.18 T - Tuning Command« « .« o e .o 87

PMCo01d -3- ORMEC

0.0

TABLE OF CONTENTS

69.19 U -Until Command+ o v i e e e e e e e e e e e e e e e 88
6.9.20 V - Velocity Command ¢ . .« vttt e e e e e e e e e e 89
6.9.21 = - Assign Motion Axis-ID.o oo o s oo 89
6.10 SYSTEM STATUS POLLING« v v i v et it e e e e e e e e e e 90
6.11 CREATING COMPLEX MOTION PROFILES« .« o o o v o v, 91
6.12 ERROR CODES AND EXCEPTION HANDLING« .+« .. 95
6.12.1 Syntax Error Codeso .o e e e e e 95
6.12.2 Motion Error Codes i o e e e e e e e e e e e e e e e e 95
6.12.3 Programming Error Codeso 96
6.12.4 Miscellaneous Error Codes « v o« o oo oo e e 96
MAINTENANCE . . v o v v e 97
7.1 PREVENTIVE i ot i e i e 97
72DEMAND e 97
7.3 DIAGNOSTICS ¢ v v v v v e v e e e e e e e e e e e e e e e e e 97
APPENDIX . . . it ot e 98
8.1 TYPICAL PMC POSITIONING SYSTEM DIAGRAM 98
8.2 TYPICAL MOTOR LOOP INTERFACE DIAGRAM « . . 99
8.3 SYSTEM ARCHITECTURE DIAGRAM.« « o v v v vt v v oo 100
8.4 SYSTEM ANALOG ARCHITECTURE DIAGRAM 101
8.5 SERIAL COMMUNICATIONS INTERFACE DIAGRAM 102
8.6 MOTOR LOOP AND SYSTEM AXIS INTERFACE DIAGRAM 103
8.7 PARALLEL INTERFACE DIAGRAM« . o« o v v v 104
8.8 MOTION SIGNAL OVERVIEW DIAGRAM« « v« v o v v v v 105
8.9 PC BOARD LAYOUT . . . o v v i i i e e e e e e e e e e e e e e 106
8.10 COMPONENT LAYOUT o i e e i i v v e e e e e e e e e e e e e e e e 107
8.11 MIS-200 SCHEMATIC. &« i i e e e e e e e e b e e e e e e e e e e 108

PMC001d -4- ORMEC

1.1 GENERAL DESCRIPTION

GENERAL DESCRIPTION

f. 1.1 INTRODUCTION

‘

The ORMEC Programmable Motion Controller (PMC) is a single board microcomputer based product
which facilitates the design of high performance motion control applications. A typical servo
positioning system utilizing a PMC is diagrammed in Appendix 8.1.

In combination with a servodrive, a servomotor, a DC tachometer and an incremental position
encoder, the PMC is used to create a closed loop digital position system. This position control
system translates straightforward single character commands into high performance motion. Accelera-
tion, velocity and distance are specified using ORMEC’s Motion Programming Language (MPL), and
controlled by the PMC to a high degree of precision.

PMC-BASED SYSTEM

SERIAL COMMUNICATIONS S
I | L_LoaD |

SERUD—-
PMC —NWORIVE - SERUO-

P LOGP MOTOR
P CONTACTOR
. |~
T | TacH
AUXILIARY
I-0
! ENCODER

Straightforward, single character, MPL commands may be executed directly from the Serial Communic-
ations Interface (SCI), or from non-volatile program memory to create motion control routines. This
interactive aspect of MPL greatly reduces the application effort required to implement sophisticated
high performance motion control systems compared with alternative approaches.

PMCs also include 16 discrete digital I/O points called the Machine I/O (MIO), which can be used as
an interface directly to the operator, the machine under control, or for a straightforward interface to
Programmable Controllers or other computers or control electronics with discrete 1/O capability.

The PMC is available as a standard product in two versions. Information in this manual applies to
both versions except when otherwise noted.

PMC-903 -Standard MPL firmware with programming and 2K bytes of non-volatile RAM memory for
stand-alone or computer hosted operation with fast programming even while the servo is
in motion

PMC-904 -Standard MPL firmware with programming and 8K bytes of non-volatile RAM memory for
stand-alone or computer hosted operation with fast programming even while the servo is
in motion

PMCooid -5- ORMEC

1.1 GENERAL DESCRIPTION

Both the PMC-903 and PMC-904 can be operated in three configurations:

Computer Hosted - interfaced through the SCI
Programmable Controller Hosted - interfaced through the Machine I/O (MIO)
Stand Alone - interfaced through the MIO

1.2 STAND ALONE OPERATION

Since the PMC has non-volatile MPL program memory, the user can define a "powerup routine" to
coordinate with the PMC’s 16 discrete Machine I/0 (MIO) points and operate a stand alone motion
control system, controlling a machine or machine module.

Any standard ASCII terminal can be used to "program” the desired machine operation in MPL,
configuring the program to start automatically each time power is applied. This machine operation is
easily programmed to mix servomotor controlled motion with the operation of the discrete 1/0 points.

Included in the 16 discrete parallel I/0O signals of the MIO are:
- eight general purpose inputs (for use with switches or machines Sensors)
- four general purpose outputs (for use with indicators, solenoids, etc.)

The MIO is flat cable compatible with industry standard Opto 22 type I/O modules allowing machine
interface via AC or DC drivers and receivers with a wide range of voltage and current ratings. A
detailed description of the Machine I/0 Interface is in Section 4.5.

1.3 PROGRAMMABLE CONTROLLER HOSTED OPERATION
A PMC based system can be interfaced to programmable controllers through the MIO by either
programming it for stand-alone operation with handshaking to a programmable controller or by using

the approach described below:

The user programs up to 32 individual motion control functions using any ASCII serial terminal,
giving them single character names.

- The programmable controller selects the appropriate function by placing the motion function
address in parallel at the Machine I/O (MIO) Interface and asserting the "execute” input.

- The programmable controller can tell when the function is complete and the PMC is ready for a
new command by observing the "ready” signal from the MIO.

- The function can be interrupted, and motion halted, at any time by asserting the "stop” input at
the MIO.

- The general purpose MIO signals may be used for "program to program” communications between
the PMC and the programmable controller.

PMCo001d -6- ORMEC

1.4 GENERAL DESCRIPTION
1.4 COMPUTER HOSTED OPERATION

A PMC based positioning system can be also used as an intelligent motion control peripheral serving
a host computer by accepting commands through the Serial Communications Interface (SCI).

The host computer interface to a PMC is similar to communicating with a serial terminal. The host
computer sends a byte (character) of information to the PMC, and waits for that byte to be accepted
by the PMC. The acceptance of each character is indicated by the hardware handshake line, and is
usually less than a millisecond.

When an MPL command is completed, the PMC executes it. Upon completion of the command, the
PMC sends a right curved bracket ")" (7Dy or FDyg) to the host to indicate that it is "READY" for a
new command.

Therefore, simply by sending ASCII characters to the PMC, the host computer can execute PMC
positioning commands directly, including commands which cause the PMC to perform complex user
defined motion control functions. Only high level commands and status requests are required from
the host computer, since the PMC isolates it from real time servicing requirements of the servo posi-
tioning system, allowing a single microcomputer host to coordinate the operation of several high
performance servomotor systems.

Relative or absolute positioning commands of more than nine digits can be performed. In addition,
system position, velocity and acceleration information can be requested asynchronously. This relieves
the host from tasks such as keeping track of the current absolute position of the system or storing
system parameters required by the application.

1.5 SIGNAL NAMING CONVENTIONS

Throughout this manual, references to inverted logical signals will use the convention of following the
signal name with an apostrophe (). e.g. INPUT Some drawings or charts in this manual may use
the "overbar” notation as follows:

e.g. INPUT

Signals without apostrophes will be considered logically "true” or "asserted” when they are "high" or
"set” i.e. at the level of the power supply (either +5 VDC or +12 VDC). If they are at 0 VDC ("low"
or "cleared"), they are considered logically "false”. e.g. A signal named RESET would be expected to
perform the "RESET" function when it is "true" or "asserted”, which is when it is "high" (at a +5
VDC level) or "set" (to a logical 1).

Conversely, signals with "overbars" or apostrophes following them are considered logically "true”, or
"asserted” when they are "low". e.g. A signal named RESET should be "low”, or at 0 VDC, in order
to perform the "RESET" function. The term "logical complement” may be used in reference to signals
meaning that they will be "low” when the function is asserted, and "high” when the function is not
asserted.

1.6 COMPARISON OF SERVOS AND STEPPING MOTORS

In addition to being easier to use than a stepping motor/translator system, 2 PMC based motion
control system has important advantages when compared to stepping motor/transiator systems.

1. Closed loop operation results in load independent positioning accuracy and predictability; in
addition, system position information is available for the user.

PMC001d -7- ORMEC

1.6 GENERAL DESCRIPTION

2. Torque, speed, and acceleration capabilities with existing servomotor/servodrive technology are
much greater than with stepping motor technology, which leads to much higher performance of the
resulting equipment.

3. Angular resolution and accuracy are tailored to the application needs, with existing technology
providing resolutions in excess of 500,000 pulses per revolution where required. In contrast
typical stepping motor resolutions are 100 to 200 pulses per revolution. To provide higher
positioning accuracy, rotary encoders can also be mounted directly on the load or direct linear
feedback can be provided using linear position encoding devices.

4. The maximum stepping rate of a PMC based servo system is 384 KHz, compared to typical stepping
motor-translator stepping rates of 2 to 5 KHz.

5. An internal position error counter has 12 bit capacity allowing errors of up to +2048 counts, com-
pared with the intolerance of stepping motors to following errors. Should the position error
exceed the capacity of this internal counter, the PMC senses it as a fault and reduces the servo
loop gains to zero. In addition a buffered TTL level output is provided to drop out the loop
contactor and/or power down the servodrive. This information is also available to the user.

1.7 SYSTEM INTERFACE

A typical digital position servo using a PMC is diagrammed in Appendix 8.1. Easy to use interfaces
are provided for convenient connection to the other system elements, with the PMC combining all the
other system components together and creating a working digital position servo system.

The PMC does not depend on the servodrive to close the velocity loop or provide feedback control
system compensation, but utilizes it only as a power amplifier. Closed loop system performance is
easily optimized with five internal software selectable loop gains and compensation circuits. If velo-
city loop compensation circuitry is available on the servodrive of choice, the sophisticated user can
utilize it by wiring the DC tachometer signal to the servodrive directly instead of to the PMC. This
approach is not usually recommended by ORMEC, however, because the following advantages of
centralizing servo loop gain adjustment and compensation at the PMC are lost:

-*Software selectable loop gain in the velocity loop
- Software selectable velocity loop compensation break frequency
- Interlocks which disable integral + proportional compensators, allowing smooth powerup

In order to make the PMC easy to use in a wide variety of applications, special consideration has
been given to the digital interface circuitry used for the encoder and the machine sensor. These
digital inputs have high input impedances (20K ohm minimum), and can be connected in single-ended
or differential configurations. The differential configuration gives the maximum noise immunity and
should be used for encoder cables longer than ten feet.

The inputs are shipped configured for single-ended operation with a 2 volt switching threshold and
can be converted to balanced differential by the removal of a socketed SIP resistor. See the
INSTALLATION Section 4.4 for details. For greater noise immunity, these digital inputs are unaffect-
ed by input pulse widths of less than a specified minimum. See Section 3.4 for details.

pPMCo01d -8- ORMEC

2.0 THEORY OF OPERATION

‘@ THEORY OF OPERATION

2.1 INTRODUCTION

A PMC based positioning system translates high level commands from the Serial Communications
Interface (SCI) or MPL program memory into high performance motion. The PMC System Architec-
ture is described in Appendix 8.3 and the PMC Analog Architecture is described in Appendix 8.4.

2.2 SYSTEM ARCHITECTURE OVERVIEW

2.2.1 Incremental Position Encoder

The PMC is configured to use an incremental position encoder. This encoder is used to measure
changes in load displacement and provide position feedback. Most PMC based digital positioning
systems use optical incremental encoders, however any type of position encoder that produces TTL
compatible phase quadrature outputs is acceptable.

An encoder with phase quadrature outputs has two digital square wave outputs, which are displaced in
phase by 90 degrees, that switch between 0 VDC and +5 VDC. These two outputs are commonly
called "Encoder Channel A" (ENCA) and "Encoder Channel B" (ENCB), and the direction of motion
determines the phase relationship between them. i.e. If for "forward” motion, Encoder Channel A
leads Encoder Channel B by 90 degrees, then for "reverse” motion, Encoder Channel A will lag
Encoder Channel B by 90 degrees. See Appendix 8.8 for a diagram showing the relationship between
ENCA and ENCB for forward and reverse motion.

For more information on incremental position encoders, consult literature from a position encoder
manufacturer. An excellent source of information on the subject is the book Techniques for Digitiz-
ing Rotary and Linear Motion by Dynamics Research Corporation of Wilmington, MA.

The resolution of the position encoding is determined by the number of lines per unit distance that
cause output pulses. Line count is a term commonly used by manufacturers of incremental position
encoders, and it refers to the number of line pairs of the physical encoding device per unit distance.
e.g. lines per revolution or lines per inch.

2.2.2 Encoder Interface

Refer to discussion of the PMC System Architecture in Appendix 8.3, the PMC Motor Loop Interface
in Appendix 8.6 and the Motion Signal Overview in Appendix 8.8 for the following discussion.

Integral to the PMC is a quadrature decoder circuit which interprets the phase quadrature encoder
input channels to determine the load direction and distance traveled. The PMC's quadrature decoder
circuit utilizes "4-times multiplication” circuitry, which means that every transition of the two
encoder channels is utilized to create a forward or reverse motion feedback pulse, as appropriate.
These signals are illustrated in Appendix 8.8. '

Because four encoder distance units are derived from each encoder cycle, the effective resolution of a
digital position control system utilizing a PMC is "4 times" the stated "linec >unt” of the incremental
position encoder. e.g. Using an encoder with a linecount of 1000 lines per revolution results in a
digital position control system with a resolution of 4000 counts per revolution.

The encoder pulses from the quadrature decoder are subtracted from the position reference informa
PMC001d -9- ORMEC

2.2 THEORY OF OPERATION

tion in the digital "position summing junction", which in turn has an output proportional to the
*position error" of the control system.

2.2.3 Summing and Compensation Circuitry

In order to cause motion of the digital positioning control system, the on-board microprocessor
outputs serial forward or reverse command pulses, which are "summed" with the decoded encoder
feedback pulses in the 12 bit digital position summing junction (up/down counter). The micro-
processor simultaneously provides an analog "FeedForward Velocity Reference” output (FFVELREF),
which is applied directly to the velocity loop. The presence of this signal greatly reduces the amount
of "position following error” required to operate the system at high speed.

The "Position Error” signal (POSERR) is processed by the position compensation amplifier (UA2C).
Here the position loop gain (PLGAIN) is adjusted over a range of 1 to 255 (48 db) and an integral +
proportional compensator can be enabled and adjusted by setting PLCOMP.

In general, an analog DC tachometer is used to sense motor velocity and provide velocity feedback
for maximum performance. In some systems, this signal is derived by other means such as the
encoder quadrature signals. This velocity feedback signal (HVTACH or LVTACH) is summed with the
feedforward velocity reference (FFVELREF) and the compensated position error signal resulting in the
current command signal (ICMD). This signal is used as the input to the servodrive. Velocity loop
gain (VLGAIN) is adjusted over a range of 1 to 255 (48 db) and an integral + proportional compen-
sator can be enabled and adjusted by setting VLCOMP. Detailed instructions for tuning the system
are found in Section 5.4. Information on the Tuning Command and examples are in Section 6.9.

2.2.4 Modes of Operation
There are four operating modes of the PMC:

Mode 0 - IDLE In idle mode, the PMC disables the servodrive enable output (SDRVEN) and
disables the position and velocity loop compensation circuitry.

Mode 1 - VELOCITY In velocity mode, the PMC operates as an analog velocity control system,
driving the velocity loop with an the analog FeedForward Velocity Refer-
ence signal derived by the microprocessor and the reference generation
circuitry. This voltage is applied to the velocity loop through the feed-
forward gain adjust (FFGAIN). An analog signal proportional to speed is
provided for external use, by connecting to the external speed reference
output and adjusting the gain with the external gain adjust (XGAIN). This
mode is useful for setup and troubleshooting of the servo system, as well as
being useful for advanced motion control applications which change mode
from position control to some other feedback source such as force, tension
etc. Distance position reference pulses are not entered into the Position
Summing Junction (PSJ).

Mode 2 - POSITION In position mode, the PMC operates as a digital positioning system,
controlling speed and position as a phase lock loop position controller.
Digital position reference pulses derived by the Reference Generation
Circuitry are summed in the PSJ and an analog feedforward voltage 1is
applied to the velocity loop.

The positioning error in the digital PSJ is monitored, and if it exceeds the
12 bit capacity of the PSJ (+ 2048 counts), the system is returned to the
IDLE mode.

PMCO001d -10- ORMEC

o

2.2 THEORY OF OPERATION

Mode 4 - MASTER In master mode, the PMC operates as a Master Axis Controller, providing
common motion information to other PMCs which are controlling servo-
motors.

2.2.5 Operation Overview

The PMC initiates a position change by sending the desired number of pulses to the Position Summing
Junction through the Position Reference (POSREF) inputs at a rate proportional to the desired
velocity. Simultaneously, the PMC applies an analog velocity feed-forward voltage (FFVELREF) to
the velocity summing junction to minimize the error required in the Position Summing Junction.

The compensated velocity error signal is used as a current command (ICMD), and is applied to the
servodrive to cause the servomotor to generate sufficient torque to move the load with the desired
acceleration and velocity for the designated distance.

The tachometer and associated velocity loop stabilize this transition and an encoder output results.
The polarities of the forward/reverse command pulses and the decoded encoder pulse are such that
the contents of the digital Position Summing Junction is reduced as the encoder feedback is received
(negative feedback). If the input pulse train continues at a constant rate long enough for the trans-
ient to decay, the encoder feedback pulse train be forced to have the same frequency as the com-
mand pulses.

When the load moves a distance equivalent to the number of command pulses, the error value in the
Position Summing Junction goes to zero, causing the system to stop. Because of the PMC’s "4-times"
encoder multiplication circuitry, a system using an encoder with a "line count" of 2500 lines per
revolution will move 1/10,000 of a revolution for each command puise received. Since the position
loop remains active as long as the system is still in Mode 2 (position mode), a holding force related
to the position loop gain will be present as required to hold proper output position.

2.3 MOTION PROGRAMMING LANGUAGE ARCHITECTURE

The PMC’s Motion Programming Language is architected to provide a logical, consistent and easy to
use set of commands which specify high performance motion. The result is a calculator like language
which provides the application designer a great deal of freedom and power with which to solve unique
application needs.

The approach .taken is to utilize a set of single character commands followed by an optional argument
(number) and one or more single character command terminators.

This approach allows convenient communications with virtually any commercially available ASCII
terminal or computer system. Moreover, the brevity of the language provides a great deal of "power
per keystroke", making it quick and easy to use. In addition, it requires minimal communications
overhead when interfaced to a host computer.

Like a programmable calculator, commands can be executed interactively or combined in a "program”
(or "routine") for future automatic execution. These routines are stored and edited in the "program
buffer" using the Program command.

Because execution time is an important factor in most high performance motion control applications,

the language is designed to operate quickly, with many commands requiring less than a millisecond
and the longer commands requiring a few milliseconds.

PMCO001d -11- ORMEC

2.3

In addition, the PMC is architected to be able to
motion in the background, while simultaneous

THEORY OF OPERATION

service the real time requirements of commanding

ly running this interpretive language. This feature

allows the PMC to perform necessary caiculations to set up future motions while simultaneously

performing positioning tasks, enabling the user or host computer to

being controlled.

An overview of the PMC’s Motion Programming Language is found in the following table:

talk to the PMC while motion is

MOTION PROGRAMMING LANGUAGE (MPL)

Commands

A Program

Function Description Commands
Motion Parameter pefining Motion velocity
Commands parameters Acceleration
Index
Jog
Home
Motion Action Initiating Motion Jog
Commands Go
Index
Home
Contour
Kitt
Synchronization/ synchronizing Delay
Interface Commands Motion until
, & ; Terminators
Manipulating output
Machine Outputs
Program Buffer Entering or Editing Program

a Labeling Motion Routines

Program Control Utilizing Subroutines Branching
Commands & Creating Complex Looping
Motion Control Function Call
Applications Exit
System Setup selecting System Normalize
Commands Options Set/Show
Tuning

= Assign Axis-ID

PMC001d

-12-

ORMEC

{
L]

2.3 THEORY OF OPERATION

2.3.1 MOTION Commands and Terminators

When performing indexing commands, the PMC creates motion profiles where the velocity is essen-
tially trapezoidal as illustrated below. For the motion to be generated, the parameters of distance,
velocity and acceleration are specified. The parameters are specified as numbers referencing distance
as counts of the digital position transducer, velocity as the frequency of the pulse train from the
digital position transducer (counts/sec or Hz) and acceleration as the frequency change per second
(Hz per millisecond or kHz per second). For fastest possible real-time performance, each of these
parameters is expressed as an jnteger value and has an allowable range, as well as a powerup default
value. Refer to Section 6.3 for more detail regarding the parameter ranges. These parameters are
stored in the motion buffer, from which they are be retrieved for each positioning command.

PMC MOTION PROFILE

v U--TOP UELOCITY

I——INDEX DISTANCE

A——ACCELERAT ION

AVUAILABLE ACCELERATION SHAPES:
LINEAR, S-CURUVE (SHOWN> & PARABOLIC

The PMC continuously keeps track of positioning system location to a range of approximately + one
billion counts, and is capable of providing that information to the host, performing software limit
functions with it, and either keying program execution or moving to absolute locations within that

range.

In addition to storing parameters for distance, top speed and acceleration rate, the PMC stores a
home speed, a jog speed, and system configuration information. The configuration information is
stored or displayed using the "S" command, and has an effect on system operation by enabling or

disabling a number of product features.

Not only does the PMC allow host interaction while motion is being controlled, but the host system
can also ask the PMC for up-to-date status information such as the present velocity, acceleration
rate, absolute position, or distance to go until the current index is complete. This information is
called system status information and interaction with the motion buffer and system status information

is illustrated in the following chart.

PMCo001d -13- ORMEC

2.3 THEORY OF OPERATION

| | I |

I MOTION BUFFER] | SYSTEM STATUS [

I | l ' |

! | | |

+--->| Index distance (7)) |=-eeeee- >| remaining distance (I!) |
o ! | I

U >>+--->| Acceleration rate (A?) |-------- >| current Accel rate (A!) |
s 1 1 | | |
E +--->| run Velocity (V?) |+---+--->| current Velocity (V!) |
R I an |
>>+--->| Jog speed (42) fo---e i (HE) |

O b I
N +--->| Home speed (H?) |----+ | i
LON B | | I
E >>+--->| Y Register status (S?) | | |
R I I I
A | I
€ >>4e-ccceecccecsccccccoccccssnnnonannoasann >| absotute position (G!) |
T | |
1 #eececiceccrestcnc o ecniccoeanaaaaanans >| Tuning status (T |
o | | , !
N >>#--c--eccccecesccnncencsonnncaccacocnen >| X Register status (S?) |
| | I
#eeccicrecssccetcencecnsttatstnanaconon >| 2 Register status (S7) |

| | ' I
#ecaseccanaacccccscoccccsocacane cecccnace >| system Mode (sM) |

| I

The PMC can parametize the next motion profile while a motion is being commanded because the user
interacts with the motion buffer for setting up the parameters for the next move. At the time each
motion is commanded, the PMC takes information from the motion buffer and initiates the move.
MOTION Commands and Terminators can be further classified as those which only set up Parameters
for motion control, and those which also are used to initiate Motion. These two sets of commands
are outlined in the following chart.

MOTION

P Commands
A velocity - set/display maximum velocity
R Acceleration - set/display acceleration rate
A I ndex - set/disptay index distance
M Jog - set/display jog speed
E Home - set/display homing speed
T
E Terminators
R <«cr> carriage return enters value as parameter
S ? display tast entered value

! display current value

4 continuously display current value

PMCO001d -14- ORMEC

®

2.3 THEORY OF OPERATION

The examples below assume that the PMC is in its powerup (default) mode. For alternate parameter
ranges, see Section 6.3.

Examples
V300<cr> - set the maximum velocity to 30,000 counts/second
A3000<cr> - set the acceleration rate to 3000 counts/second per millisecond

With a 10,000 count per revolution position encoder, the above two commands set up a speed of three
revs/sec (180 RPM), with an acceleration time of 10 milliseconds.

It is possible to specify a set of motion parameters for acceleration rate, top speed, and index
distance that are inconsistent. i.e. The specified index distance is not long enough to reach the
specified top speed using the specified acceleration rate. If this happens, the PMC will temporarily
reduce the top speed enough to perform the desired position change using the specified acceleration
rate. This temporary top speed value is not stored in the motion buffer but only used for the
following index or series of identical indexes. The algorithm used by the PMC is very efficient for
minor reductions of top speed and less efficient for very large top speed reductions. This algorithm
takes between 3 msec and 50 msec of computation time dependent on the amount of the top speed
reduction required, and so faster operation is possible when the specified motion parameters are
consistent.

The Acceleration and Velocity commands are used only to specify motion parameters, however the
Index, Jog, Home and absolute Go commands are used to start MOTION as well as specify parameters.

MOTION
Commands
Index - move retative to the current position
M Go - move to the absolute position
0] Jog - move at the jog speed until told to stop
T Home - move to the encoder reference or sensor
I
O Terminators (will enter argument)
N + (plus sign) - start motion in positive direction
- (minus sign) - start motion in negative direction
* (asterisk) - stop motion
Examples
1500+ Move 500 counts positive relative to the current position; The motion actually starts
when the + is received.
I- Move negative from the current position by the distance currently stored in the

motion buffer
G9306-<cr> Go to absolute location -9306; The motion actually starts when the <cr> is received.
Calculations to set up the motion are initiated when the sign of the absolute location

(+ or -) is received.

I* Stop current motion

J95+ Jog at 9500 encoder counts/sec in the positive direction

HI- Home at 100 counts/sec in the negative direction

J- Jog in the negative direction at the rate currently commanded jog rate

PMC001d -15- ORMEC

2.3

THEORY OF OPERATION

2.3.2 SYNCHRONIZATION AND INTERFACE Commands and Terminators

SYNCHRONIZATION & INTERFACE

Commands
Delay

until

Output

Terminators
; (semi-colon)
: (colon)
, (comma)

- delay specified time or distance
- wait until specified input condition is true
- set Machine 1/0 output condition

- wait for motion to reach steady state speed
. wait for motion to begin deceleration
- wait for motion to stop

Svnchronization Characters

The fact that MPL program execution is independent of the motion it creates is a powerful feature in
that it allows Machine I/O to be manipulated or successive motions to be set up while motion is
taking place. Synchronization capability is provided to allow MPL program execution to synchronize
with the motion being created.

<>

k1

Examples
D1000

D,

U9

D100;

01

PMCO001d

The <;> character can be used with the Go, Jog, Home, Index, Delay and Output
commands to synchronize them with the start of constant velocity. e.g. The command
I+;<cr> starts a positive index and then delays until the acceleration is complete
before executing the next MPL command.

The <> character can be used with the Go, Jog, Home, Index, Delay, and Output
commands to synchronize them with the start of decel of the motion in progress.

The <,> character can be used with the Index, Go, Jog, Home, Delay, Output and

Normalize commands to synchronize them with the completion of motion which may be

in progress.

Delay 1000 milliseconds (1 sec)

Delay until motion is complete

Wait until inputs IN1" and IN8’ are asserted

Delay until 100 msec after acceleration is complete
Turn on Output OUTYI’

-16- ORMEC

2.3 THEORY OF OPERATION

2.3.3 PROGRAM Commands and Terminators

t. PROGRAM commands and terminators are used to manipulate the Program Buffer or Control the flow
of program execution. The Program Buffer is memory that contains labeled groups of MPL motion
control commands (called programs or routines) which will be executed sequentially at a future time.
These commands are entered or edited using the Program command, with the editing functions used
during the Program command detailed in Section 6.4. They are executed later by using the Branch
command to tell the PMC which program label to begin.

PROGRAM
B
U Commands
F Program - enter, edit, or examine motion programs
F a<label> - mark program label
E <esc> (escape) - exit program mode
R <space> - stop motion and exit program mode
Examples
P{ Enter programming mode with the cursor at the beginning of the Program Buffer
PA Enter programming mode with the cursor at the beginning of the "A routine”
P<cr> Enter programming mode with the cursor at the end of the Program Buffer
. . P? Examine the Program Buffer from the beginning, a line at a time; Changes are not
' allowed.
PROGRAM
Commands
C
(0] Branch - conditional jump to a program tabel
N Loop - jump to program label a specified number of times
T Function - conditional call to a labeled subroutine
R Exit - conditional return from subroutine or program
(8]
L
Examples
BA Branch unconditionally to the "A routine”
BB2 Branch to the B routine if machine input IN2’ is asserted
LA100 Transfer program execution (Loop) to label A 100 times
FB Call function B; Program execution will resume at the next MPL statement upon
completion of the function.
E Unconditionally exit (end) a function
. ES Exit a function if inputs IN4’ and INI' are asserted

PMCo01d -17- ORMEC

23 THEORY OF OPERATION

SYSTEM SET-UP OR DISPLAY
Commands
Normalize . software reset, set absolute position
Set or Show (B) - set or display baud rate
Show (C) - display condition of machine inputs
Set or Show (L) - set or display software overtravel limits
Set or Show (M) - set or display motor control mode
Show (P) - show last program lsbel passed
Show (S) - display system status
Set or Show (T) - turn on or off program Trace
Set or Show (W) - turn on or off program Write Enable
set (X,Y,2) - set or display control/communications status
= Assign Axis-1D - assign axis identifier
Tuning : - set servo loop gain and compensation adjustments
Terminators
? (question mark) - report parameter value
{ (exclamation mark) - report system status

Examples

N Normalize the PMC (restarts the firmware)

NO- Normalize the absolute position counter to 0 .

N3795+ Normalize the absolute position counter to +3795

N<er> Normalize the serial communications (enable selected baud rate)

SBl<cr> Set the PMC baud rate to 38.4k Baud

SX8 Set the X Register to 8y (Bit pattern 0000 1000)

SX0B Set the X register to 0By (Bit pattern 0000 1011) which transposes the meaning of +
and - direction, enables machine inputs IN4’ and IN8’ to be used as overtravel limits,
and selects a top velocity of 192,000 counts/sec.

SY40 Set the Y register to 40y (Bit pattern 0100 0000) to select s-curve acceleration

TP10 Set position loop gain to 10.

T? Display current tuning parameters.

TE? " Display the normalization error.

pMcCoold -18- ORMEC

23 THEORY OF OPERATION

2.3.4 Error Codes

]

i‘
The PMC motion programming language checks for errors at execution time, and when one is found,
an error message is generated.

ERROR DE

Format: <bell> <space> <space> # <error code>

Error codes

A - Syntax error (invalid argument)

B - Motion error

C - Programming error (while editing or running)
D - Miscellaneous error

Note; The D2 error for input aborted (using the ESCAPE) does not have the <bell> <space> <space>.
" Also, in non-echo mode all errors have the format:

' # <error code>

See Section 6.12 for detailed information on PMC error codes.

®

PMCO001d -19- ORMEC

31 SPECIFICATIONS
SPECIFICATIONS
3.1 GENERAL SPECIFICATIONS
CPU type 8085A
speed 3.072 MHz
Motion trol Progr
2k bytes non-volatile RAM PMC-503
8k bytes non-volatile RAM PMC-%04
Position loop
position error +2047 counts max
positioning speed 384,000 counts/sec max
compensator break frequency ranges
velocity loop 1.5 to 50 Hz
position loop 0.5 to 25 Hz
3.2 SYSTEM AXIS INTERFACE SPECIFICATIONS
Power Supply R
+5VDC 0.9 typical, 1.2 Amp max
+12VDC 0.15 Amp max
Digital Inputs
STOP’ (TTL Input) logical 0 Vin < 0.8 YDC
Iin < -1 mA
logical 1 Vin > 2.8 VDC
lin < 400 uA
acceptance time 4.5 msec minimum
RESET (NMOS Inputlogical 0 Vin < 0.8 VDC
Iin < -1 mAa
logical 1 Vin > 2.8 VDC
Iin < 400 uA
Digital Input/Qutput
EXTREF EXTREF' (Input/Output of U28 (SN75174N) and U29 (SN74175N)
logical 0 Vin < 0.8 VDC
Iin < -1 mA
logical 1 Vin > 2.8 VDC
Iin < 400 uA
pulse acceptance time 1.3 us minimum
input frequency 192 kHz maximum
PMCO001d -20- ORMEC

3.3

SPECIFICATIONS

3.3 SERIAL COMMUNICATIONS INTERFACE SPECIFICATIONS

Standards

Baud Rates

Strapping

EIA RS-232C data bits 8

RS-422 start bits |
stop bits 1
parity none

Note that the PMC can use all 8 data bits for communications, however normal
ASCII terminal communications require only 7 data bits. The eighth and most
significant data bit is used for binary communications with computers, and also
as an informational bit in the ")" character of each "prompt" to indicate
whether the servodrive is enabled or not. For other than advanced PMC
communications, terminal devices should be configured for 7 data bits.

As initially configured from the factory, the PMC will automatically set its baud
rate to one of the following baud rates:

38.4K 19.2K 9600 4800 2400 1200 600 300

To allow the PMC to perform its "autobaud” function, automatically determining
the baud rate of the terminal or computer communicating with it, the user must
send a series of "carriage returns" <cr> which is a 0Dy. The PMC will start
with its baud rate set to 38.4K Baud, and reduce it by a factor of 2 for each
character received that is not recognized as a <cr>. This series must contain
enough "carriage returns” to allow the PMC to reduce its baud rate to the baud
rate of the user electronics, and the "carriage returns” must not be sent at a
rate faster than one every 35 milliseconds, with the complete series sent within
2.1 seconds.

Baud rate may also be set using the SB command, as detailed in Section 6.9.15.
When this is done, the "autobaud" sequence of carriage returns will no longer
be required in order to communicate with the PMC. Instead, the user has the
responsibility to communicate at the proper baud rate.

Standard strapping is for RS-232C Data Communications Equipment (DCE) with
no flow control. ie. Most RS-232 ASCII terminals will communicate with this
interface. Other strapping options are detailed in Appendix 8.5.

3.4 MOTOR LOOP INTERFACE SPECIFICATIONS

Position Encoder

Type

Resolution

Max Data Rate

PMC001d

Dual channel quadrature with "square wave" outputs and an optional "once per
revolution” reference pulse

Four times "linecount”

384 kHz This rate refers to the decoded pulse train, and for this rate the "A"
and "B" quadrature encoder channels are operating at 96 kHz each.

-21- ORMEC

3.4

Digital Inputs

ENCA ENCB acceptance time

‘@) ENCREF SENSIN

Single-ended

Differential
Analog Inputs
Tachometer HVTACH
LVTACH

4 usec min for Vmax
8 usec min for Vmax
32 usec min for Vmax

384 kHz
192 kHz
48 kHz

max range OVto+l2V
impedance 20K ohms min
switch point 2 V (standard)

max range -12Vto+l2V
impedance 40K ohms min

switch point ov

common mode 10 V max

impedance 338K ohms
voltage 150 VDC max

impedance 68K ohms

voltage 60 VYDC max

SPECIFICATIONS

For tach voltages greater than 150 VDC, use a resistor external to the PMC.

Velocity Command Input

EXVCMDIN impedance

Digi utpu

SDRVEN SDRVEN’ I.C. type
max sink current
max source current
low level output
high level output

Analog Qutgu.ts

ICMD XVELREF IC. type
Range
Qutput Current
Load Resistance

10.0K ohms

SN7404N TTL buffer
-5 mA

400 uA

0.4 volts typical

4.0 volts typical

LM324N Op Amp
-10 Vto+l0V

5 mA max

2K ohms minimum

3.5 MACHINE 1/0 INTERFACE SPECIFICATIONS

Digital Inputs
Logical 0

Logical 1

Acceptance Time

Vin < 0.8 VDC
Iin < -1 mA

Vin > 2.8 VDC
Iin < 400 uA

4.5 msec minimum

EXECUTE’ Acceptance Timel.0 msec minimum

PMCO001d

.22-

ORMEC

35 SPECIFICATIONS

Digital Qutputs

I.C. type SN7417N TTL buffer

max sink current -16 mA

max leakage current -0.25 mA 2.1
low level output voltage 0.4 volts typical el

high level output voltage 4.0 volts typical

3.6 MECHANICAL AND ENVIRONMENTAL SPECIFICATIONS
Dimensions 14.5"x 6.9" x 0.8" uiax
Weight one pound max

Temperature ranges

Operating 0 to +50 degrees C
Storage -25 to +125 degrees C
Relative humidity (w/o condensation) 0 to 90%

PMCo001d -23- ORMEC

4.0 INSTALLATION

INSTALLATION

' 4.1 INTRODUCTION

The PMC can be custom mounted in an enclosure of the user’s design or in a chassis supplied by
ORMEC. Mounting holes are provided at the corners of the printed circuit board as shown in
Appendix 8.9, and the PMC comes with Card Ejectors designed for use with Bivar ECON O GUIDE
card guides.

A typical PMC confxguranon is diagrammed in Append1x 8.1 and 8.2. The signals termmated on each .
connector are described in the following interface sections.
4.2 SYSTEM AXIS INTERFACE (TM2)
The system axis interface provides for connection of the power supply voltages as well as an external
position frequency reference (EXREF) used for distance based motion, a RESET input to reset the
PMC, and a STOP’ input to stop motion and terminate operation of motion control programs. Pin
assignments are shown below and in Appendix 8.6. A removable Phoenix Type MSTB 1.5/10ST
Terminal Block or equivalent will mate with TM2, and one is included with each unit.
Pin# Signal Name Description
1 EXREF EXREF is an RS-422 driver/receiver tri-statable digital output/input for use as
. an external position reference for distance based motion commands. (See
Section 6.8 for a discussion of how to use this signal.)
2 EXREF EXREP is the logical complement of EXREF.
3 COMMON Power supply common
4 +12 YDC +12 YDC power supply
5 -12 YDC -12 VDC power supply
6 +5 VDC +5 YDC power supply
7 SHIELD EMI isolated SHIELD is an interconnection point for cable shields provided to
) reduce signal noise. It is recommended that the user connect the shields, at

one point, to chassis ground.

8 POLARIZE This pin is omitted from TM2 to allow polarization of the matching terminal
board (TB2).

9 STOP’ Stop the current motion and break the current motion control program

10 RESET Reset the PMC system, including the on board microprocessor

PMCo001d -24- ORMEC

4.3 INSTALLATION
4.3 SERIAL COMMUNICATIONS INTERFACE (JM2)

A 25 pin female "D-Subminiature” connector will mate with connector JM2. A typical installation of
the serial communications interface is shown in Appendix 8.1. The complete connector pin assign-
ments are shown in Appendix 8.5. Data, parity, start and stop bit specifications are included in the
SPECIFICATIONS Section 3.3.

As can be seen in the Appendix, by strapping header connector J5, this interface is configurable to
be compatible with EIA Standards RS-232, RS-422/449, and RS-423/449. Further, it can be strapped
to be either a DCE or a DTE device for both RS-232 and RS-449. More detailed information about
this interface is found in the SPECIFICATIONS Section 3.3.

It is shipped from the factory strapped for RS-232 DC‘E. with no handshake to conveniently work with
a standard terminal.

4.4 MOTOR LOOP INTERFACE (TM1)

The motor loop interface is provided for interconnection to the servodrive, the loop contactor, the
DC tachometer, the position encoder and a machine sensor. A Phoenix Type MSTB 1.5/21ST Terminal
Strip or equivalent will mate with TM1. The connector pin assignments are shown below and in
Appendix 8.1.

Note that the interfaces to the encoder and the sensor input are factory configured for either single
ended or differential inputs of up to 24 vdc, with a nominal switching point of 2 vdc. The switching
threshhold is controlled by the value of SIP Resistor network RN3, which is socketed for possible
field change. The schematic for this is located in Appendix 8.6.

Pin# Signal Name Description
1 ICMD ICMD (Current Command) is an analog output, with a range of + 10 VDC, which

the PMC uses to command servomotor current (torque).
2 COMMON Power and logic signal common

3 SDRVEN SDRVEN (Servodrive Enable) is a 0 to 5 VDC digital output signal used to
control a solid state relay which enables power to the servodrive and/or a loop
contactor. This signal or its complement may also be connected to an inhibit
input of some servodrives.

4 SDRVEN’ SDRVEN’ is a 0 to 5 VDC digital output which is the logical complement of
. SDRVEN.

5 SHIELD EMI isolated SHIELD is an interconnection point for cable shields provided to
reduce signal noise. It is recommended that the user connect the ShleldS
one point, to chassis ground.

6 POLARIZE This pin is omitted from TMI to allow polarization of the matching terminal
board (TB1).
7 HVTACH This analog input is for connecting the D.C. Tachometer when the maximum

anticipated tachometer voltage is between 60 and 150 VDC. This signal should
be negative for "forward” motion of the servomotor.

8 LVTACH This analog input is for connecting the D.C. Tachometer when the maximum
anticipated tachometer voltage is between 0 and 60 VDC. This signal should be
negative for "forward" motion of the servomotor.

PMCo0014d -25- ORMEC

e
'V\‘

4.4

10

1]

12

13

14

15

16

17

18

19

20

PMCoo01d

COMMON

+5 VDC

ENCA

ENCA’

ENCB

ENCPB’

ENCR

ENCR’

SHIELD

SENSIN

SENSIN’

INSTALLATION
Power and logic signal common

The +5 VDC power supply used for the PMC is provided at this terminal for
optionally powering the incremental position encoder.

ENCA (Encoder "A") is the incremental position encoder "Channel A" (one of
two quadrature square wave signals). It is a digital input signal with a "low"
level of 0 VDC and a "high" level of between +5 YDC and +24 VDC.

ENCA’ is the logical complement of ENCA, and is present only when the
incremental position encoder used has differential outputs. If single ended
encoders are used this signal may be either left open or grounded.

ENCB (Encoder "B") is the incremental position encoder "Channel B" (one of
two quadrature square wave signals). It is a digital input signal with a "low"
level of 0 VDC and a "high" level of between +5 VDC and +24 VDC.

ENCB’ is the logical complement of ENCB, and is present only when the
incremental position encoder used has differential outputs. If single ended
encoders are used this signal may be either left open or grounded.

ENCR (Encoder R) is the incremental position encoder "Channel R" (usually a
"once per revolution” reference signal). It is a digital input signal with a "low"
level of 0 VDC and a "high" level of between +5 VDC and +24 VDC.

ENCR’ is the logical complement of ENCR, and is present only when the
incremental position encoder used has differential outputs. If single ended
encoders are used this signal may be either left open or grounded.

EMI isolated SHIELD is an interconnection point for cable shields provided to
reduce signal noise. It is recommended that the user connect the shields, at
one point, to chassis ground.

SENSIN (Sensor Input) is a machine sensor signal which may be used to
synchronize motion to an external event. When a motion is primed to start,
begin deceleration or stop on this signal, the signal has immediate effect (less
than two encoder counts).

SENSIN® is the logical complement of SENSIN, and is present only when the
machine sensor used has differential outputs. If a single ended sensor is used
this signal may be either left open or grounded.

EXVCMDIN EXVCMDIN (External Velocity Command Input) is an analog input to the

XVELREF

velocity summing junction of a PMC. Strapping for it is on Header J7 and is
shown in Appendix 8.6. Default strapping routes this input directly to the
velocity summing junction. Alternate strapping routes it through an adjustable
gain stage (FFGAIN) shown in Appendix 8.4. Note that when it goes through

the adjustable gain stage, this signal must have a positive polarity, with a
maximum voltage of +2.5 VDC.

XVELREF (External Velocity Reference) is a bipolar analog output which is
proportional to the commanded velocity of the PMC. The gaimn of this signal is
independently software selectable using the TX command. Strapping for this
signal on Header J7 allows either polarity of the output as shown in Appendix
8.4.

-26- ORMEC

4.4 INSTALLATION

Note that for proper operation of any feedback control system, the system must be interconnected so
that the feedback is megative. i.e. The feedback signal should cancel the effect of the reference
input signal, not reinforce it. The direction that you choose for the motor to turn for "positive"
rotation is in up to you, but after that choice is made, several signal polarities must be consistent
for_proper operation. There is an option available to transpose the meaning of the "+" and "-"
directions by setting Bit 1 of the X Register, but the following discussion assumes that the X
Register, Bit 1 is set to "0", as it is on powerup. Follow the following steps to set up the system.

1. Select the direction of motor rotation to be considered positive.
2. The D.C. tachometer signal (TM1-7 or TM1-8) must be negative for positive motor rotation.

3. The motor armature leads nn r_negative velocity 1 edback given
conditions 1 and 2 above. ie. When power is applied with the position loop disabled, and a
small velocity commanded by the PMC, the motor must proceed slowly, and not "run away” in
one direction or the other. If the motor "runs away”" at high speed, reverse the connections
to the motor armature leads.

4, The incremental position encoder channels ENCA and ENCB must be connected for negative
position feedback. For negative position feedback, the signal ENCA will "lead" ENCB by 90°
for forward rotation. When the position loop is enabled, and no position reference pulse
trains are present, the motor should remain at rest. If the motor does not remain at rest,
reverse the ENCA and ENCB channels. If you are using differential output encoders, don’t
forget to also reverse ENCA’ and ENCB’ as well. See Appendix 8.8 for a graphic represen-
tation of these signals.

S. Refer to the GETTING STARTED Section for instructions on powering up a PMC based
motion control system. ’

4.5 MACHINE 1/0 INTERFACE (JM1)

The Machine I/O Interface is provided to allow the PMC to interface with the machine or other
systems using 16 discrete digital I/O points. This interface is compatible with Opto-22 type 16
position 1/O racks and modules, and the polarities used were selected for logical compatibility with
this type of interface. There are 11 inputs, 8 general purpose and 3 special purpose. There are 5
outputs, 4 general purpose and one special purpose.

Standard uses of the Machine I/O, as can be seen from the table below, are to handle overtravel
limit switches, a hardware STOP command, and to indicate whether or not the PMC is ready to
accept a new ‘command. In addition, user programmable inputs and outputs are provided. The
MOTION ROUTINE ADDRESS inputs allow interface with equipment such as Programmable Controllers,
by allowing them to access previously stored MPL Routines using standard I/O points.

A Berg 34 pin mass termination flat cable connector (P/N 6690-234) or equivalent will mate with JMI.
The connector pin assignments are shown in Appendix 8.7.

PMC001d -27- ORMEC

4.5

-
'

’

Signal Name
ouT! - OUT®

INI® - IN8O’

READY’

SEL’

STOP’

PMCO0014d

INSTALLATION

MACHINE 1/0 INTERFACE (JM1)

1/0# Pin # DRIVER 1/0 POINT FUNCTION
33 +5 VDC _| interface power
0 31 w8 Ut 7 four
1 29 u4s oute!’ | general purpose
2 27 U48 OUT4! (FAULT') ! outputs
3 25 u4s OUT8!' (IN MOTION') _
4 23 - INY? | four
5 21 . IN2? | general purpose
6 19 - ING' (-LIMIT) | inputs
7 17 - IN8' (+LIMIT) 2l
8. 15 . IN10' CADR1') | four more general
9 13 . IN20* (ADR2') | purpose inputs or
10 11 - INGO* (ADR4') | motion address
1" 9 IN8O' (ADR8')’ _ lines
12 7 SEL (ADR10") _| motion address
13 5 . EXECUTE® | MIO Interface
14 3 ua8 READY' | handshake
15 - - STOP! 1 Lines
All even pin numbers are grounded.
Description

These discrete digital outputs are controlled by the Output command. When
asserted, the outputs will be at 0 volts (TTL low), causing Opto-22 compatible
modules to conduct current. They may also be read from the Serial Communi-
cations interface using the O? command.

These discrete digital inputs can be used by the conditional Branch, Exit, Func-
tion and Until commands to control MPL program flow. They will be at 0 volts
when asserted (voltage applied to the Opto-22 compatible module). They may
also be read from the Serial Communications Interface using the SC! command,
or polled from the Serial Communications Interface, gven while an MPL program
is being executed from the program buffer, using SYSTEM STATUS POLLING.

The READY’ output will be asserted (TTL low) whenever the PMC is ready for
a command to be entered at the SCI or for a new motion routine to be run. It
will not be asserted while a command or program is executing. It is used as a
"handshake” line when executing MPL programs from the Machine I/0 interface.

The SEL’ input is used to select either MPL routine "0" or "1" for execution
when the EXECUTE’® input is asserted. If asserted, (TTL low) at the PMC
input, the "1" routine will be executed; otherwise the "0" routine will be
executed.

Asserting this input will stop system motion using a pre-programmed STOP rate,
and also stop any MPL program which may be executing, causing the PMC to
unconditionally return to the READY state.

-28- ORMEC

4.5

FAULT

IN MOTION’

-LIMIT & +LIMIT

ADR!’ - ADRI1O’

EXECUTE’

INSTALLATION

OUT4’ can be programmed to automatically assert whenever a "fault"-occurs by
setting Bit 2 of the Z Register to 1. This FAULT output will be cleared by
the start of the next MPL command.

OUTS’ can be programmed to automatically assert whenever the PMC is
commanding motion by setting Bit 3 of the Z Register. It will also clear
automatically when the commanded motion is complete.

IN4’ and IN8’ can be programmed to automatically operate as hardware over-
travel limits by setting Bit 1 of the X Register. Hardware overtravel limit
switches can be configured to operate (impede overtravel motion) when either
asserted (TTL low) or not asserted (TTL high), using the SLH command. SLHO
specifies that the overtravel limit is asserted when the input is a TTL low, and
SLH1 specifies that the overtravel limit is asserted when the input is a TTL
high. -

The IN10’-IN80' and SEL’® digital inputs can be configured to allow the PMC to
access up to 32 MPL routines from the Machine I/O interface. This alternative
operation is accomplished by clearing Bit 4 of the Z Register. These signals
should then be considered "logical address lines” ADRI1'-ADRI10’, allowing the
user to select and execute 32 different MPL routines from hardware. The
motion routine labels accessible from this hardware addressing scheme are listed
in the following table of Hardware Accessible Motion Routines. To run one of
the specified routines, place the appropriate signals on these address lines as
indicated in the table, and when the PMC is "ready”, as indicated by the
READY" output, assert the EXECUTE’ input. General purpose inputs IN10’-
IN8O’ continue to be accessible from MPL, if useful.

Strobing this discrete digital input signal to a TTL low will start execution of a
pre-programmed motion routine. The routine executed is determined by either
the SEL’ input or the combination of the ADR1’-ADRI10’ address inputs. If the
READY" output is not asserted by the PMC, then the EXECUTE’ input will be
ignored.

The following table details the hardware address requirements for selection and execution of MPL
routines from the Machine 1/0 interface. The table documents the signals required at connector JMI
for programs labeled 0 & 1, or @ through _, including the alphabet (in capitals). Connect 1, 2, 3, 4
or 5 Motion Routine Address lines as shown below depending on the number of motion routines you
want to access from hardware for your particular application.

PMCo001d

-29- ORMEC

INSTALLATION

4.5

HARDWARE ACCESSIBLE MOTION ROUTINES

—— . = — — —— — —— —— —— o — g —— —

.
~
»
o e
o £
N ¢
) . O
" o
Sy L}
=38
[& I
'
[
1
.
.
]
.
«—l un LY
x| .
= '
.
[= [
(o] [
v .
[L4] . *
-
.
.
O .
L&) .
L)
L~ Bl] LI)
©f «—
.
[[
[= .
'
L]
[« S [
.
x [
.
[= .
o .
-8 o
7.—E1..0
el w
.
.
.
.
.
’
.

ascsvsessve

esesscaccsse

B ’ . v
N * . .
' . . +
]
L] L] . . .
O + NN ¢« 2O 0O« @ Voaoawuwu +» O NM I AUATES N o o«
O 0 « OO « DOOO + OO OO OO0 O O 1+ = « = - - - - 1wuw mmw_”n
N . ' .
.
' ’ . .
m [l + L]
. . .
[P VU UG PO I — e e} o e = — — e e - —— — — —
— . + . .
. . . .
7 . . .
» . .
% @ ' . .
- [[’ N N
&€ ~ O -~ O = - O - O + - O« 0O - O = O 1+ -~ O = O - O ~— O - O «— O — O - O
- . .
Q : ; :
v v '
- 13 " . '
o v . .
o~ . [C . .
a v~ «— oomal.lnvo.lal.loo - - O 0O + «~— «— O O - — O O - «~— O O - - 0O O
. — 0
m . @ .
. [L] '
0 o~] C .
. [o .
-~ . . [— .
e 1t == 1 OO0 OO ”m - - - - 0O o0 oo I i o o oo o - - - - o oo o .
[] .
2 : ' a 3 .
. .
. . (4] [N..
© : : 3 £
. . ' -
o - v+~ ¢« = = + = = -« + OO0 00 O OO0 0O 0§ v~ v - - - - O O oo o 0O 0O ¢ —~
. . L]
. . . ~3
= : : . 2
. * [. [
(=) o
- . ! . .
A ™ ¢ | e) e e - - = v » OO0 0 O 0O o oo o O o O 0000“
. . . .
2 . : . : b
. . . L]
. . . . n
.
. . * . .
.
. ’ . N .
| e =) e e e ot | e e i ——— e - — — = . — —— — — — —— — — —— ——— — — —— — ——
. .
. .
. .
. .
. .
L .
. .
. »
. .
. .
’ .

. e s . ———— —— — — —— —— — — — f— — ——— Chmn — —— = Mama e tmn i — o —— — —— — o — —— —— —

=> don't care

now => (ow TTL level
* Only one address line is used with Z Register Bit 4 set; see Section 6.9.15e.

uiw 2> high TTL level

ORMEC

-30-

PMCo001d

4.5 INSTALLATION

BCD Thumbwheel Switch Configuration

The following table can be used for selecting ten motion control routines from a standard single digit f-.
binary coded decimal thumbwheel switch. The second table outlines the configurations and wiring
diagram for an implementation with a common thumbwheel switch.

deccenssanee Gececccsccesecamcscassasconssocssans -
] 3 Motion Routine Address]
| Program | I
| tabel | ADR10 ADRS ADR4 ADR2 ADR1 |
| | dM2- 7 9 1 13 15 |
deescccccanse @escccanscccasesasssvenersusseravoon +
| 4 | 0 1 t 1 1|
| Q | 0 1 1 1 o |
| R | 0 1 4 0 1
[s | 0 1 1 0 o |
| T | 0 1 0 1 1|
] u] o 1 0 1 o |
] v ! 0 1 (] 0 1
| W I 0o 1 o o o |
| X | 0 0 1 1 1]
| Y] o 0 1 1 0o |
deeseccccans fecvececccesennsarran et nanons +
1 => high TTL level 0 => low TTL level
foceccccscsasanccces aassescasssseasonatesncoaas +
| PMC-903, PMC-904]
| —_
} ADR1 ADR2 ADR4 ADR8 COM ADR3IO |
| JM2- 15 13 11 9 8 7]
decee- asceces VLR RD) VARELE yero-- yeoo-- Ve ZERER
v \ v v v |
TR T T BRI
fesscaccnccccncnnes FERRTR $eneee P +
| WHEEL 1 2 4 8 c |
I |
| 0 x l
| 1 x X |
2 x I
] 3 x X |
] 4 x X |
| H x x x]
| [X X |
| 7 X X X |
| 8 X !
| 9 X x |
I [
| x - indicates signal connected to Common |
| |
| C & K Components, Inc. |
] Thumbwheel Switch !
| Section Types: 21,27,31 |
PP SR PR .

PMCo001d -31- ORMEC

46
4.6 PMC CONFIGURATION JUMPERS

The PMC has five header connectors which provide user selectable hardware options. These options

are selected by the placement of "push-on" jumpers on the header connectors. All of the configur-
ation headers are described in this section.

4.6.1 Assigning Axis-ID (Header J6)

Axis-IDs are assigned to PMCs to allow multible units to communicate with a host computer or
programming terminal through a single serial communications interface. This communications is
accomplished using a "serial bus” technique, which connects all the PMCs on a "party line".

To use a serial bus, the PMCs must each have a unique Axis-ID assigned and they must have their
Serial Communications Interface configured for RS-422. For systems with up to 14 PMCs on a serial
communications bus, the Axis-ID is normally assigned by the placement of Jumper Straps on Header
J6. For systems with 15-32 PMCs on a single serial bus, the additional Axis-IDs must be assigned in
non-volatile RAM. Serial bus communications operation is described in OPERATION Section 6.7.

u r Strap Positions for Header
1-2 3-4 5-6 7-8

With these jumpers in place, the PMC will check at powerup to see if an Axis-ID has been previously
set in non-volatile RAM. If no Axis-ID is found, the PMC will operate in its "default" serial
communications mode as initially shipped from the factory and described in Section 5.1. If an Axis-
ID has been previously specified, serial bus communications mode will be enabled, and the PMC will
assume the "unselected” state. Refer to OPERATION Section 6.7,

If all of these straps are removed, the Serial Bus Communications Mode will be disabled, even though
an Axis-ID may have been previously stored in non-volatile RAM. If some, but not all, of the straps
are installed, the PMC will use the appropriate Axis-ID as detailed in the table below, enable serial
bus communications, and assume the "unselected” state.

Header J6 Jumper Strap Positions Axis-1D
7-8 5-6 3-4 1-2
- - - - Disables Serial Bus

- - - * A
- - - B
- - » * C
- * - - D
- . - . E
- . * - F
- » » G
* - - - H
. - - * 1
* - * - J
L - » *® K
* * - - L
* . - . M
* * » - N
* * * * Assigned frum

non-volatile memory

- Indicates no Strap Present * Indicates Strap Present

PMCO001d -32- ORMEC

4.6

4.6.2 Serial Communications Hardware Configuration (Header J5)

The Serial Communications Interface can be conveniently configured for RS-232, RS-422 or RS-423 (.
using jumper straps on Header J5. The PMC can also be easily configured as either a DCE (Data
Communications Equipment) or DTE (Data Terminal Equipment) device. Lastly, the PMC’s hardware
handshake interface lines can be disabled for communications to a "dumb” terminal lacking hardware
handshaking capability. See Appendix 8.5 for the "PMC Communications Interface" schematic and a
pictorial of Header J5 with various jumper strap configurations.

4.6.2.1 RS-232 DCE Communications (Default)

1 T Position I
7-8 9-10 15-16 17-18 19-21 28-30 29-31

This serial communications selection is suitable for:
1) any programming terminal supplied by ORMEC
2) IBM-PCs or compatibles using ORMEC’s development software (MAX)
3) most RS-232 terminals

4.6.2.2 RS-422 DCE Communications

Jumper Strap Positions for Header J5
11-12 13-14 21-22 23-24 25-26 27-28 31-32 33-34

If an you are using an ORMEC Serial Bus Interface module (SBI) to convert RS-232 to RS-422 for
serial bus communications, it is possible to supply power to the SBI from your PMC. Install addi-
tional jumpers as follow:

Additional Jumpers for Supplving Power to ORMEC Serial Bus Interface Modules
1-2 3-4 5-6 19-20.

This serial communications selection is suitable for:
1) ORMEC’s SBI-910-RS or SBI-911-8S (either is recommended)
2) ORMEC's SBI-900-RC or SBI-911-SC (with standard configuration)
3) other RS-422 communications devices

4623 RS-232 DCE (No Handshake) Communications

Jumper Strap Positions for Header J35
6-8 10-12 15-16 17-18 19-21 28-30 29-31

This serial communications selection is suitable for:
1) RS-232 terminals which do not have "hardware handshaking"

4.6.2.4 Other Communications Configurations

To convert the RS-232 DCE configurations shown above to RS-232 DTE, remove the jumpers from
pins 15-16 & 17-18 and replace them on pins 15-17 & 16-18.

The PMC can be configured for RS-422 DTE by placing the jumper straps as shown below:
11-13 12-14 21-23 22-24 25-27 26-28 31-33 32-34 '

PMC001d -83- ORMEC

4.6

Header JS also allows other communications configurations, and for a detailed schematic, consuit
Appendix 8.5.

4.6.3 Feedforward and External Velocity Reference Selection (Header J7)

Default Jumper Strap Positions for Header J7
1-2 3-4 . 6-8

The jumpers from 1-2 and 3-4 may be removed, and a jumper placed from 2-4 to allow an external
signal to provide the feedforward reference. The external signal should have a range of 0 to +2.5
volts maximum. This option should be chosen when the system is to accurately track an externaily
provided motion reference in the "motion bus slave” mode. The schematic for this header is shown in
Appendix 8.6.

The jumper from 6-8 may be removed and placed from pin 7-8 to change the polarity of the external
velocity reference signal. The schematic for this circuitry is shown in Appendix 8.4.

4.6.4 Daughter Board Connector (Header JM4)

fault Jum a iti ader JM4
25-26

The jumper strap above must be in place unless there is a daughter board added to the PMC.

4.6.5 Motion Reference Bus Selection (Header JM20)

u Position der JIM2

The schematic for this header is documented in Appendix 8.7.

The jumper strap from pin 1-2 is strapping the motion reference bus receiver output to the internal
circuitry of the PMC. If an EBC-900 daughter board is added to the PMC for applications where the
PMC is referencing its motion to a remote encoder, then the jumper from pin 1-2 must be removed
so that the EBC can provide the EXTREF signal for the internal circuitry.

The jumper strap from pin 4-5 is strapping the internal position reference command pulses to the
motion reference bus driver IC (U29C). In some cases, usually when an EBC is used with the PMC,
this jumper strap may be moved from 3-4. This change straps the internal reference pulses (provided
by the on-board EBC) to the motion reference bus driver IC.

PMCo001d -34- ORMEC

5.0 GETTING STARTED

GETTING STARTED

"‘. 5.1 POWERING UP AND ESTABLISHING COMMUNICATIONS

([

A typical PMC implementation is found in Appendix 8.1 and INSTALLATION instructions are found in
Section 4. For the initial part of this section, it is not necessary to have the servodrive and
servomotor attached to the PMC and, if they are attached, it is recommended that power not be
applied to the servodrive until you are ready to start the tuning section. At that point, and before
the power is applied to the servodrive, the motor should be fastened down securely. The first time
tuning is attempted it is better if the mechanical load is not attached. For optimum response, it will
have to be tuned again after the load is attached.

It is recommended that you interface an IBM-PC or compatible running ORMEC’s development
software (MAX). This software allows terminal emulation for communicating with one or more PMCs
and also Upload and Download functions for storing and retrieving MPL programs on diskettes.

.« 1_1 A YR A me mm e camalle - A -~ e — ol cncinl tacceioanla Anem lha wvna

Shouid an IBM-PC or compatible not be available, most ASCII serial terminals can be used.

Attach your IBM-PC or ASCII terminal to the Serial Communications Interface at connector JM2 to
learn the PMC Motion Programming Language (MPL) and set up the servo gains and compensators.
The PMC comes from the factory with the Serial Communications Interface configured as an RS-232C
DCE, and it therefore should be compatible with most ASCII RS-232C terminals. Your terminal must
be configured for one of the following baud rates: 38.4k, 19.2k, 9600, 4800, 2400, 1200, 600 or 300
baud. For more detail on the Serial Communications Interface, see the SPECIFICATIONS Section.

After attaching your terminal to connector JM2, provide power to the PMC.

then power is applied to the PMC, the on-board microprocessor first performs built-in diagnostics as
indicated by the flashing two color LED indicator. After approximately 2 seconds of diagnostics, the
LED should be yellow (actually flashing between red and green every four milliseconds). See the
MAINTENANCE Section for details.

Upon successful completion of the diagnostics, it searches through the MPL program memory for a
powerup routine. Assuming no powerup program was encountered in the user programmable
non-volatile memory, the PMC is now in the IDLE Mode (0), and all parameters are at their default
values.

Sending a series of "carriage returns" to the PMC allows it to automatically determine your computer
or terminal’s baud (communications) rate.

The PMC automatically determines the baud rate by starting with its serial interface configured for
the fastest baud rate, and if a character is received which is not a valid carriage return, halving its
baud rate. When the next character is received, it is examined by the PMC and, if it is not a valid
carriage return, the PMC again halves its baud rate. This may be repeated up to eight times allowing
baud rates from 38.4k to 300. When the proper number of carriage returns are sent so that the
PMC’s and host’s baud rates match, communications is established. A time of 2.1 seconds is allowed
for the sequence of up to 8 tries.

To initiate communications with the PMC, you must provide enough carriage returns for the PMC to
determine your baud rate. They must be sent at least 35 milliseconds apart, and within a 2.1 second
total time period. There is more information on the Serial Communications Interface in the SPECIFI-
CATIONS and INSTALLATION Sections. If your PMC does not respond to carriage returns as it
should, hold the STOP’ line (on TM2) to ground during powerup and try again.

Once the PMC determines your baud rate, it will respond with the version code for its firmware,

PMCo001d -35- ORMEC

5.1 GETTING STARTED

followed by a "prompt" of =). At this point, the PMC is operating in its interactive mode, and is
ready to accept commands. For an in-depth description of OPERATION, see Section 6.

There are four sample Motion Programming Language (MPL) routines below (and in your PMC's non-
volatile memory) to assist you in getting started. The routines are labeled "R" (Report), "P"
(Powerup), "H" (Home) and "T" (Tuning).

The Report routine will be used later to report position error enabling you to tune the velocity
feedforward gain, and then modified and used to provide a report of position error during a motion.

The Powerup routine in the PMC is labelled "@P__Powerup", which will not execute automatically at
powerup. To make it run automatically at powerup, it must be edited to replace the "@P" program
label with "@@". This particular routine starts by initializing the loop gains, compensators and
feedforward gain, then selects "S-curve” acceleration and position mode (enabling the servodrive). It
delays 100 milliseconds for the servodrive to power up and balances the velocity loop with the
Normalization command, before calling the Home routine. When the Home routine finishes by
executing its Exit statement, the Powerup routine Exits, putting the PMC in its interactive mode.

The Home routine included finds a unique angular position of the motor by performing a Home
command, which causes the motor to run in the negative direction until the encoder reference (called
encoder marker by some encoder vendors) is found, Delaying until the Homing motion stops, and then
moving 125 counts in the positive direction. It then delays 50 milliseconds for the motion to settle
and normalizes the absolute position counter to zero before exiting.

The fourth routine is the Tuning routine. It causes indexing motions in the forward and reverse
directions, separated by 300 millisecond delays. It then *Loops" back to label T three times, for a
total of 4 indexes in each direction. Upon completion of the 4 pairs of moves, the velocity loop gain
is raised by a value of 1, and the 4 indexes are repeated. This routine will therefore gradually raise
your system’s velocity loop gain while performing test moves (much like a signal generator). By
attaching your oscilloscope to the tachometer signal and running routine T, you can watch your
system’s velocity response as the PMC raises the velocity loop gain. As the gain is raised, you
should observe the system becoming more and more responsive. i.e. The tach signal will rise more
and more quickly in response to the move command. When the tachometer response is acceptable, as
detailed later, abort the Tuning routine by pressing the SPACE bar or the ESCAPE key.

PMCO001d -36- ORMEC

5.2 GETTING STARTED

ing of th mple Routin

’ MPL Comments

“I (@Report @R marks the beginning of routine R; the rest is a comment
TE! Report the position Error
TF1+ Tune the velocity Feedforward gain up by 1 increment
D300 Delay 300 milliseconds
LR49 Loop back to label "R" 49 times
E Unconditionally Exit the R routine
@P_Powerup @P marks the Powerup routine; replace the P with @ to activate
TVI10 Tune the Velocity loop gain to 10 (range: 0-255)
TCV9 Tune the Velocity loop Compensator to 9 (range: 0-Fy)
TP4 Tune the Position loop gain to 4 (range: 0-255)
TF42 Tune the velocity Feedforward gain to 42 (range: 0-255)
TCPA Tune the Position loop Compensator to A (range: 0-Fy)
SY40 Enable "S-curve" acceleration by Setting the Y-register to 40y
SM2 Set the PMC in position mode (Mode 2)
D100 Delay 100 milliseconds for the servodrive to powerup
NO- Normalize absolute position and "balance” velocity loop offset
FH Unconditionally call Function H
E Unconditionally Exit the powerup routine
@Home @H marks the beginning of the "H" routine
H- Run in the - direction at the default Home speed (2 kHz)
D, Delay until the encoder reference is found and the motion stops
1125+ Index 125 counts positive (to the selected "Home" position)

. D50, Delay 50 milliseconds after the motion stops

NO- Normalize the absolute position counter to "-0"
E Unconditionally Exit the Home routine
@Tuning @T marks the beginning of the Tuning routine
Y100 Set the top velocity to 10,000 counts/sec (100 counts/tenth of a second)
AS5000 Set the acceleration rate to 5000 cts/sec per msec (2 msec accel time)
12000 Set the index distance to 2000 counts (202 msec index time)
I+ Index in the positive direction
D300, Delay 300 milliseconds after the motion stops
I- Index in the negative direction
D300, Delay 300 milliseconds after the motion stops
LT3 " Loop back to label T three (3) times
D1000 Delay 1 second (1000 milliseconds)
TVI1+ Tune the Velocity loop gain up by |
™ Report the current Tuning Parameters
BT Unconditionally Branch to label T

PMCO001d -87- ORMEC

53

GETTING STARTED

5.3 EDITING THE PROGRAM BUFFER

We are now going to use the programs listed above to gain some experience editing the program

buffer.

In the sequences listed below, bold print indicates the sequence that you type, and the

regular print is the information sent by the PMC. See the OPERATION Section 6.4 or the Motion
Programming Language brochure for a description of the editing commands.

MPL3.0b
=}P(
@Report

TE!
TFl+.
D300

PMCo001d

Enter "Program mode” with the cursor at the beginning of the program buffer; The PMC
responds by displaying the first line as shown.

If you have an IBM-PC or compatible with ORMEC’s motion development software (MAX),
you will be able to use the cursor positioning (arrow) keys, as well as the insert and
delete keys for editing. If you have a regular terminal, the cursor positioning keys listed
are used.

Review the program buffer a line at a time by typing successive linefeeds, usually
LINEFEED or LF on most ASCII terminals. If you can’t find a linefeed key, a linefeed
can be typed by typing a "control J" (depress the CTRL key and while holding it, press
the J key).

Type a linefeed <If> to move the cursor down a line

Type <If>

Type <if>

Type <tab>; The cursor is now on the 3 and so you can overtype it. Overtype the 3 with
a 2. You can also back up a character by typing a backspace <bs>. If you back up
beyond the first character in a line the cursor will move back to the end of the previous
line. The delete key will move you up one line. In this way, you can move the
cursor around the program buffer until you find the area you want to overtype, and then
modify it. When finished editing, depress the ESCAPE <esc> key, to return to the inter-
active mode, signified by the =} "READY" prompt.

To edit the modified "Report” routine, type PR. Try out the rest of the editing commands
found in Section 6.4 to familiarize yourself with them.

-38- ORMEC

5.4 GETTING STARTED

5.4 TUNING THE PMC

You are now ready to "tune” the servo loops of your PMC. To overview the analog circuitry of the
. PMC, see the Analog Architecture Drawing in Appendix 8.4 and the illustration below which shows
the PMC gain and compensation adjustments available to the user to tune the system.

SYSTEM OPTIMIZAT ION

MPL VELOCITY FEEDFORWARD
4
. UREF M GAIN
- a4
cAINAY Y. | cAIN 0 SERUO~-
PREF "’@" COMP "(1{)_‘_' COoMP MOTOR
F VELOCITY LOOP T
MACHINE
1.0 POSITION LOOP SCOLER

The recommended strategy for tuning the PMC is to perform the following adjustments in the order
listed. :

YELOCITY LOOP: Adjust the Velocity Loop Gain (VLGAIN)
Adjust the Integral + Proportional Compensator (VLCOMP)

POSITION LOOP: Adjust the Position Loop Gain (PLGAIN)
Adjust the Velocity Loop Feedforward Gain (FFGAIN)
Adjust the Integral + Proportional Compensator (PLCOMP)

5.4.1 Adjusting the Velocity Loop Gain

This adjustment (VLGAIN) is provided to adjust the gain in the analog velocity loop closed by the DC
tachometer. It is adjustable from a wide range of 1 to 255 (48 db) to be compatible with a variety
of servodrives, servomotors and tachometers. The range of the DC tachometer voltage should have
been determined, and the tach signal attached to either HYTACH (0 to +150 VDC) or LVTACH (0 to
+60 VDC). See the INSTALLATION Section for details.

Your servomotor and servodrive must now be wired to the PMC, and power must be applied to the
servodrive. Before applying power to the servodrive, the motor should be bolted down, and the first
time this exercise is attempted it is better if the mechanical load is not artached. For optimum
response, it will have to be tuned again after the load is attached. CAUTION: When you apply
power and enable the servodrive using the SM1 command below, your motor may start running at high
speed because the velocity feedback is positive and not negative. If cnis happens, refer to the
INSTALLATION Section 4.4 to reverse the velocity feedback and remedy this situation.

PMCo01d -39~ ORMEC

4 GETTING STARTED

The recommended approach to tune the velocity loop is to put the PMC in the Velocity Mode using
the SM1<cr> command, adjusting the velocity loop feedforward gain with a TF100<cr> command so
that the PMC can provide an analog velocity loop test signal.

For tuning the servo system, the PMC velocity parameter should be set for between one and fiv
revolutions per second, and a commanded acceleration rate of five msec or less. Note that the
Tuning routine sets the top velocity to 10,000 counts/second and the acceleration rate to 5,000
cts/sec per msec (2 msec accel time).

(4]

If your encoder has a linecount of 500, the system will have 2,000 counts per rev, and will be
commanded at 5 revs/sec. If it has a linecount of 2500, the system will have 10,000 counts per rev,
and will be commanded at 1 rev/sec. You should adjust the parameters in the Tuning program as
appropriate for your individual system if it seems too fast or two slow. Also note that, since the
feedforward gain is not yet calibrated, the arbitrary setting of TF100 may not be commanding a
proper speed.. The times for the signal will be correct, however, and the feedforward gain can be
adjusted as seems proper.

Attach an oscilloscope to the tachometer signal and then run the T Routine by typing BT<cer>. (A
convenient filtered test point (TCH) is provided in the corner of the PMC near TM1. See Appendix
8.4 and 8.9) You can stop MPL operation and commanded motion at any time by depressing the
SPACE bar. As the PMC raises the velocity loop gain, observe the tachometer signal and, when it
overshoots or the system exhibits resonance by oscillating or "buzzing", terminate the operation of
the motion control program by typing SPACE or ESCAPE. Note that the PMC reports its gain and
compensation parameters during the tuning process, due to the program line T?. Once the routine is
stopped you can type this command and receive a response as follows:

=)T? P=02 V=25 F=100 X=0 CP=00 CV=00

Since the gain is now too high, you should turn it down. This can be done by typing TV-, which
turns it down by one value to V=24 or by directly setting it using the TV24<cr> command. Using a
combination of these techniques, you may adjust it to the proper value. While adjusting VLGAIN, try
*Indexing" or "Jogging" the system to determine the effect of your adjustment. If the "TV1+" in the
Tuning routine is deleted then the routine will not adjust the gain, but only exercise the system.
The velocity loop "rise time" (time to go from 10% to 90% of full value) for most servo systems
should be between 1 and 15 msec, as long as the system is operating in "small signal” mode. To be
operating in small signal mode, the commanded velocity must be small enough so that the motor
voltage and current do not saturate (limit). Normally a speed of between one and five revs per
second will not saturate the servo system.

5.4.2 Adjusting the Velocity Loop Integral + Proportional Compensator

Once VLGAIN is adjusted for no overshoot, but with a reasonably fast rise time (under 10 msec, and
probably under 5 msec), VLCOMP should be adjusted. The object is to raise the value for VLCOMP
to the maximum possible without adding overshoot to the tachometer response. This is done by
editing the Tuning routine to change the TV1+ line to read TCV+. When this change is made, repeat
the test above by typing BT<cr>. An example of what the response might look like follows:

=)T? P=02 V=25 F=20 X=0 CP=00 CV=0C

Adjustments to VLCOMP may also be made directly from the terminal, and "Jogging” or "Indexing” the
svsten to determine the effect.

PMC001d -40- ORMEC

5.4 ' GETTING STARTED
5.4.3 Adjusting the Position Loop Gain

This adjustment (PLGAIN) is provided to adjust the gain in the digital position loop closed by the
incremental position encoder. It is adjustable from a wide range of 1 to 255 (48 db), to be compat-
ible with a variety of servodrives, servomotors, tachometers and position encoder resolutions.

CAUTION: Your motor may start oscillating or runming at high speed when the system is put in
"position mode" using the SM2 command because the position feedback is positive and not negative.
Refer to the INSTALLATION Section 4.4 to reverse the position feedback and remedy this situation.

Modify the Tuning routine line TCV+ to TPl+ to tune the position loop. Put the PMC in Position
Mode by typing SM2<cr> and turn off the velocity loop feedforward gain by typing TFO<cr>.

With your oscilloscope still attached to the tachometer signal, run the Tuning routine. Keep watching
the tach signal, and when it overshoots, terminate the operation of the Tuning routine by depressing
the ESCAPE key. To determine the setting of PLGAIN that was achieved, type T?. The PMC will
respond with the values for the gains and the compensators. An example of what the response might
look like follows:

=)T? P=18 V=25 F=0 X=0 CP=00 CV=0C

Adjustments to PLGAIN may also be made directly from the terminal, and "Jogging" or "Indexing" the
system to determine the effect. Once PLGAIN is adjusted to achieve a reasonably fast rise time
(under 30 msec, and probably under 15 msec), FFGAIN can then be adjusted.

5.4.4 Adjusting the Velocity Feedforward Gain

Adjustments to the velocity reference feedforward gain (FFGAIN) should be made once the velocity
loop gain and the position loop gain have been properly adjusted.

The adjustment procedure is to "Jog" the system in the Position mode (MODE 2) by typing J+<cr> and
run the Report routine by typing BR<cr>. The Report routine as initially provided will cause the
PMC to first report the position following error, and then raise its velocity feedforward gain
(FFGAIN) by 1. This will be repeated every 300 milliseconds for up to 50 times. You will observe
during this process that the position following error will be reduced each time FFGAIN is raised. If
the following error goes negative, the system is leading the commanded position, because the feed-
forward gain is too high. When the following error gets near 0, the Report routine may be aborted
from the keyboard by depressing the SPACE bar or ESCAPE key. Note that the SPACE bar both
aborts the program and stops the servomotor motion. You may also stop the system at any time by
typing J* or pushing the STOP button on your MIS-200 if you have one.

To determine the setting of FFGAIN that was achieved, t}"pe T?. The PMC will respond with the
values for the gains and the compensators. An example of what the response might look like follows:

=)T? P=18 V=25 F=33 X=0 CP=00 CV=0C
5.4.5 Adjusting the Position Loop Integral + Proportional Compensator

Modify the Tuning routine line TP1+ to TCP+ to tune the position loop compensator. The object is
to raise the value for PLCOMP to the maximum possible without adding overshoot to the tachometer
response. With your oscilloscope still attached to the tachometer signal, run the Tuning routine.
Keep watching the tach signal and, when it overshoots, terminate the operation of the Tuning routine
bv typing ESCAPE. To determine the setting of PLCOMP that was achieved, tvpe T?. The PMC will
respond with the values for the gains and the compensators. An example of what the response might
look like follows:

PMCO001d -41- ORMEC

5.4 GETTING STARTED
=)T? P=18 V=25 F=33 X=0 CP=0A CV=0C

Again, adjust the compensator value until the response is as desired. Note that for systems where
the position error is not critical other than at rest, the position loop integral + proportional compen-
sator is optional.

The servo system is now highly tuned, and don’t forget to adjust the acceleration rate to a properly
chosen, and probably lower, value before attempting accelerating and decelerating to high speeds.
Failure to do so will likely result in severe overshoot and may "trip out" the system due to excess
position error.

Before changing your velocity acceleration and distance, use the Report routine to monitor position
error during an index by trying the following experiment. First, delete the TF1+ and the D300 lines
of the program in Program Mode. The routine has now been modified to report position error 50
times and, assuming that your programming terminal is running at 9600 baud, it will take approxi-
mately 5 msec per report. Now add the following program to the end of the program buffer by

typing P<cr>.

@Index_Demo mark the beginning of the "I" routine

I+ index in the positive direction

FR call the "R" function

D300, delay 300 msec after the motion command stops

BI transfer MPL program execution to label "I

<escape> exit the Program mode, returning to interactive command mode
=)BI transfer operation to the "I" program

When you run the program above, you will note that each time the servomotor moves, 50 "error
reports” will be sent to the console. '

5.5 PUTTING CONFIGURATION COMMANDS IN A POWERUP ROUTINE

When all your gain and compensation values are determined, you can edit the @P__Powerup routine to
be labelled @@_Powerup. The first routine in the MPL Program buffer labelled @@ will be executed
automatically whenever power is applied to the system, or the software is reset using an N* com-
mand. Don’t forget to edit the lines that set the gains and compensators for the values which you
have determined with your setup procedure. Note also that the Home routine included in your PMC
will execute a2 Home function and zero the system. With a highly tuned positioning system, it is
important to not saturate the power amplifier due to attempting to accelerate faster than the system
can handle, otherwise the system will overshoot and appear unstable. Therefore, the Powerup routine
should include a suitable Acceleration parameter. Try inserting one right before the SM2 command.

Holding the STOP’ line active during powerup will cause the powerup routine to be ignored by the
PMC.

The Home function included will find a unique position within one revolution of the position encoder
by first finding the encoder reference signal with the H- command, and then indexing 1235 counts in
the positive direction. The 125 count index is obviously arbitrary and may be edited to be any
number that you want, but this Home routine is arbitrary as well and you should modify it to be
consistent with your application needs.

PMC001d -42- ORMEC

5.5

GETTING STARTED

For example, if your PMC application is controlling a linear table with a ball screw, then you may
want the Home routine to operate as follows:

@Home mark the beginning of the "H" routine
SXA Set the X Register bits 3 and 1, to select 192 kHz top speed and enable Machine I/O

- o — - wn mwe—

general purpose inputs IN4’ and IN8’ to operate as -LIMIT and +LIMIT respectively. SXA
sets the X Register bit pattern to 00001010.

J- Jog the table in the negative direction until the -LIMIT limit switch actuates and stops
motion.

H,+ After waiting for the Jog motion to stop, move to the nearest encoder reference in the
positive direction.

1125,+ After waiting for the Home motion to stop, move 125 counts in the positive direction.

D50, Delay 50 milliseconds after the motion stops.

N- Normalize the absolute position counter to 0.

E Unconditionally exit the Home routine.

Some observations about the above Home routine follow:

* The SXA command is probably more logically included in the Powerup routine than in the Home

routine, but is shown here for illustration purposes.

This routine homes the table to the accuracy of the encoder reference, even though the limit
switch is less accurate.

The limit switch must be accurate to within one revolution of the position encoder, however, or
the system could end up one revolution of the position encoder away from the true "Home
position".

The position of the limit switch should be adjusted so that its nominal trip point is far enough
away from the encoder reference to prevent the problem noted above. This relationship can be
interactively examined by Jogging negative until the limit is hit and the motion stops, normalizing
the absolute position counter with an N- command, homing in the positive direction with the H+
command, and checking the distance between the limit switch and the encoder reference with the
G! command after motion stops.

The Home routine as listed uses the Home and Jog speeds set prior to calling it. A more robust
routine would set those speeds prior to initiating motion.

PMCo001d -43- ORMEC

5.6 GETTING STARTED
5.6 LASER MILLING APPLICATION

This application description is included to give an example of programming techniques which may be
useful for your application.

XYZ Company has products, A and B, which are laser milled with two distinct patterns. Pattern A
includes three equally spaced holes, a 1/2" slot and three more holes, while Pattern B has both sets
of three holes but omits the slot. Pattern selection should be fully programmable, allow simple
changeover from Pattern A to B and operate with a2 minimum of operator assistance.

LASER MILL ING

P |
LASER SERUOMOTOR,
GRAVITY . Y
FEED =
HOPPER | \g,— %
el)) Al
|/ ——= N,

-

R

N T ,/’)
() G

\

\

The program moves the bar stock 1.500" from the material hopper to the starting position, and calls
Function "X" which mills the first three hole pattern. The PMC activates the laser, milling three
holes precisely .250" apart. Using an input from a switch or sensor, the program selects either
Function "Y" or "Z" to continue the milling operation. Function "Y" reduces the velocity and acti-

vates the laser to mill the .500" center slot. Function "Z" omits the slot and moves to the location
for the final three holes.

After recalling Function "X" to repeat the process of drilling the three-hole pattern, the system
returns for the next piece. This application demonstrates how MPL, with its terse, intuitive program
command structure, provides the ability to easily combine command functions in a general manner to
provide a wide variety of non trivial motion control solutions.

This particular program illustrates the PMC’s outstanding performance. The 0.250" moves require only
32 milliseconds and the speed regulation while milling the slot is within .1%. Since this program
requires only 150 bytes, the PMC’s 2048 byte program space is adequate for significantly more
complex applications. The power of MPL is further illustrated by the capability of changing the 3
hole pattern to 100 holes by adding only one character to program space.

PMC001d _ -44- ORMEC

5.6

MPL,

[.‘ @Laser
' V300

A1000
Ul
G1500+
Dv

FX
FY2
FZ-2
FX
GO+
D,

BL

@X
0l
D100
00
V150
1250+,
LX2
E

@Y
1750+,
V20

® o
1500+,
00
V150

1750+,
E

@Z
V300
12000+,
E

PMCo01d

MPL PROGRAMMING FOR LASER MILLING APPLICATION

COMMENT

Label Laser milling routine "L"

Set Velocity to 3.00 in/sec (30.0 kHz)

Set Accel rate to 100 in/sec? (1000 Hz/msec)

Wait Until Run Switch (Input 1) is on

Go to absolute position +1.500" (+1500 counts)

Delay until conveyor stops

Mill 3 hole pattern by calling Function "X"

Mill slot for Product A by calling Function "Y" if Input 2 is on
Skip slot for Product B by calling Function "Z" if Input 2 is off
Mill 3 hole pattern by calling Function "X"

Return for next piece (Go to absolute position 0)

Delay until conveyor stops

Branch to "L" to repeat routine

Label function "X"

Activate laser by asserting Output |

Delay 100 milliseconds for drilling operation

Deactivate laser by clearing Output |

Set Velocity to 1.50 in/sec (15.0 kHz)

Index forward .250" (250 counts); wait until conveyor stops
Loop to function "X" twice

Exit "X" and continue with routine "L"

Label function "Y"

Index forward .750" (750 counts); wait until conveyor stops
Set Velocity to .2 in/sec (2.0 kHz)

Activate laser by asserting Output 1

Index forward .500" (500 counts); wait until conveyor stops
Deactivate laser by clearing Output 1

Set Velocity to 1.5 in/sec (15.0 kHz)

Index forward .750" (750 counts); wait until conveyor stops
Exit "Y" and continue with routine “L"

Label function "2"

Set Velocity to 3.00 in/sec (30.0 kHz)

Index forward 2.000" (2000 counts); wait until conveyor stops
Exit "Z" and continue with routine "L"

-45-

GETTING STARTED

ORMEC

6.0

OPERATION

OPERATION

‘ 6.1 MPL COMMAND OVERVIEW

ORMEC’s Motion Programming Language (MPL) has 21 basic commands, which can be used in hun-
dreds of variations to meet specific application needs and create robust motion control routines.
Below is a brief overview of the MPL command areas and their basic functions in creating motion
control applications. Syntax information for these commands are found, in short form, in Section 6.2
or, in complete detail, in Section 6.9. i

Command Name

@

nvo 2 HRE= o Q m M O gOAwW»

e o

PMC001d

Acceleration
Branch (GoTo)
Contour

Delay

Exit (Return)

Function (GoSub)

Go
Home

Index

Jog

Kill

Loop (Repeat)

Normalize

Output
Program
Set or Show

Tuning
Until

Velocity
Assign Axis-ID

Description/Function

Establish a single-letter program label in the program buffer for future
reference.

Set or examine the acceleration rate.

Transfer MPL program execution to a program label with no return.
Generate complex motion profile

Delay a specified time interval (in msec) or a number of counts before
executing the next command.

Exit an MPL subroutine and return to the MPL statement after the
original subroutine call. _

Transfer MPL program execution to a program label. When an Exit
command is executed, MPL operation resumes at the line following the
original "F command". Function calls may be nested up to three levels
deep.

Move to the specified . absolute position of the system. Examine the
system's absolute position or commanded absolute position.

Move at the specified Homing speed to the nearest encoder reference or
machine sensor.

Move the specified distance from the current position.

Move at the specified jog speed.

Kill any commanded motion.

Transfer MPL program execution to a program label a specified number of
times, and then continue program execution with the next command in
the program buffer. Loops may be nested up to three levels using a loop
counter command.

Define the current physical position. Reset the PMC firmware or serial
communications baud rate. Establish or examine memory checksums.

Set general purpose Machine I/O outputs.

Enter, edit or examine a motion program.

Set or examine system mode, baud rate, registers, general purpose
machine inputs, software limits, last label passed, system status, program
trace or program buffer write protect.

Tune servo loops or examine tuning parameters.

Wait until the specified condition is true before executing the next MPL
command.

Set or examine index speed in the Motion Buffer.

Assign axis identifier to a PMC for future Serial Bus Communications.

-46- ORMEC

6.1 UL LILA LAY

Now that we have an understanding of the purpose of each command, there are two basic constructs
in the architecture of the language which deserve special mention.

Display Characters

status of motion commands. This includes providing information on parameters in the motion buffer by
typing a command and a (?), actual data on the system’s speed or position by using a () or repeat-
edly displaying current speed or position by utilizing a (%).

es the development of motion control applications by displaying information on the actual

Synchronization Characters

MPL’s synchronization characters (,) (;) and (:) offer an effective method for coordinating MPL com-
mands with motion in progress. The (,) allows MPL to wait for the previous motion be completed
before executing a new command, the (;) holds program execution for the system to reach a constant
speed or the motion to be completed, and the () causes MPL execution to wait for the end of
constant speed before the next command is executed.

In the following description of MPL syntax, the following symbols are used:

< > - designates a variable
#* # - the enclosed item (or items) may be repeated multiple times
[] - the enclosed item (or items) are optional

6.1.1 MPL Break Features

When MPL is executing a program or waiting for some event to finish, e.g. using the (,) (;) or ()
delay features, you may want to abort the program. This can be done by sending an ESCAPE
character (ASCII 33y) if serial communications are established. If serial communications have not
been established (meaning that the baud rate has not been specified) then any character sent to the
PMC at serial communications interface will abort the program execution.

When it is desirable to stop motion in addition to aborting an executing MPL program a SPACE
character (ASCII 20y) may be sent.

There is also 2 hardware STOP line. The signal STOP’ (or BREAK') on TM2 or JM2 will always abort
whatever is going on, stop any commanded motion and return the interactive command prompt.

PMCo001d -47- ORMEC

6.2

6.2 MPL SYNTAX OVERVIEW

Acceleration

Branch
Contour

Delay Time

Exit Program
Function Call

Go
Home

Index

Jog

‘ Loop
Normalize

Qutput
Program

Quit

Set or Show

Tune Loops
Until

Velocity

Label
Assign ID

PMCO001d

A <rate> <cr>
A [<relative> <rate>] <cr>
AL <rate> <cr>
AL [<relative> <rate>] <cr>
AQ <rate> <cr>
AQ [<relative> <rate>] <cr>
AS «<rate> <cr>
AS [<relative> <rate>] <cr>
B <«label> [<condition>] <cr>
B <label> <op> <position> [<direction>] <cr>
C <timebase> <distance>
C <«ref-distance> <distance>
D[T] [<time>] [<sync>] <cr>
DM [«distance>] [<sync>] <cr>
DR [<«distance>] [<sync>] <cr>
[<condition>] <cr>
<op> <position> [<direction>} <cr>
<label> [<condition>] <cr>
<label> <op> <position> [<direction>] <cr>
<position> <direction> <cr>
[<speed>] <direction>
[<relative> <speed>] [<direction>] -
[<distance>] #<direction># <cr>
[<relative> <distance>] #<direction># <cr>
[<speed>] #<direction># <cr>
[<relative> <speed>] #<direction># <cr>
[<label> <count>] <cr>
[<label> <loop cnt id> <count>] <cr>
[<position>] <direction>
C <cr>
[<sync>]) <mask> [/<hex>]
<program> <text>
<label> <cr> <text>
<cr>
<register> <hex> <cr>
SC <«display>
SL <name> <position> [<sign>] <cr>
SL <name> <hex>
SM <mode> <cr>
SP «display>
SS «display>
ST <hex>
SW <hex> A
T #<register> [<value>] #<sign>##<cr>
U <condition> <cr>
U <op> <position> [<direction>] <cr>
V <speed> <cr>
A\’
@

LWOUNOZZrD === QTmmm

[<relative> <speed>] <cr>
<label> <text> <cr>
<id> <cr>

-48-

OPERATION

A <display>
AL <display>
AQ <«display>

AS <«display>

G <«display>
H <«display>

I <display>

J «display>

N <cr>
NC <display>
O «display>

S «display>

SL «display>
SM <«display>
ST <display>
SW <«display>
T [E] <display>
V «display>

@ <text><cr>
= <display>

ORMEC

6.2

OPERATION

Definition of Syntax Parameters

<condition>

<count>
<Ccr>

<display>

<distance>

<direction>

<hex>
<id>
<label>

<lpop count id>

<mask>

<mode>

<name>

<op>

<position>

<program>

<rate>

<ref-distance>

PMCo01d

The testing of specific machine inputs in the format <mask> [/<hex>]. A <cr> is
always a go condition.

Number of times for operation to be repeated

Carriage return (0Dp)

? display last entered value

! display current system value

% [<time>] display status each <time> interval (valid for G,H,I,J,0,SC,SS,TE,V only)
<sync> permitted in most cases

Number of relative encoder counts

+/- positive/negative <speed>, <position> or <distance>
* stop system motion (Used on G,H,I,J commands)
<sync> permitted in most cases

Hexadecimal numbers (0-9, A-F)
Motion axis identifier (most displayable characters)
Displayable character used to identify a motion routine

the character X, Y, or Z specifying the loop counter to be used. This allows loops
to be nested up to three levels.

a hexadecimal number that specifies which machine input bits are to be compared
and which are to be ignored.

Control mode: O=idle; l=velocity; 2=position; 3=position without resetting position
error, 4=master axis controller

F the forward software settable overtravel limit
R the reverse software settable overtravel limit
H the polarity of the hardware limits

An operator specifying "greater than (>) or "less than" (<) position for commands
using conditional testing

Absolute position in encoder counts

Enter, edit or display MPL program buffer:

{ initiate programming at beginning of program buffer
<cr> initiate programming at end of program buffer

? Display program buffer from the beginning

! display entire program buffer

Acceleration rate in kHz/sec; 100 Hz/sec; or 100's counts
A value from 0-9, A-H which specifies the number of

relative distance counts of the motion reference bus for the length of a position/-
position segment in the Contour command. .

-49- ORMEC

6.2 OPERATION

<register> Tuning: P=(position gain); V=(velocity gain), F=(feedforward gain), X=(external output
gain), CP=(position loop compensation), CV=(velocity loop compensation) Status: X,
Y, Z Program buffer write enable: W Program trace: T

. <relative> P increase the magnitude of the speed, distance, or rate
by the value immediately following the <relative>

M decrease the magnitude of the speed, distance, or rate
by the value immediately following the <relative>

<sign> +/- add/subtract <value> to/from <register>
<cr> set <register> to <value>

<speed> Speed in 10 Hz, 100 Hz or .01%

<sync> Synchronization character for coordinating motion:
*, wait until current motion is complete
; wait until constant speed or motion complete
wait until end of constant speed or motion complete

<text> Motion routines, comments or editing command characters
<time> Time in milliseconds
<timebase> a value from 0-9, A-H specifying the length of a position/speed segment in the

Contour command in increments of 1.33 msec.

<value> value substituted for, added to or subtracted from <register>

<

PMCo001d -50- ORMEC

6.3 OPERATION

6.3 SETUP PARAMETER RANGES, DEFAULTS AND UNITS

Motion Parameters Range Default Units
Acceleration | 1-65,535 - 100 Hz/sec
Jog | 48kHz 2- 4,800 - 10 Hz
Velocity | Mode 2- 4,800 - 10 Hz

Home 1 2- 4,800 - 10 Hz
Acceleration —T _

A | 1-65,535 100 kHz/sec

AL] 1-65,535 4000 kHz/sec

AQ | 192kHz 1-65,535 4000 kHz/sec

AS | Mode 1-65,535 1000 kHz/sec

Jog | I- 1,920 100 100 Hz
Velocity] 1- 1,920 400 100 Hz

Home 1 1- 1,920 20 100 Hz
Acceleration | 1-65,535 - kHz/sec

Jog | 384kHz 1- 3,840 - 100 Hz
Velocity | Mode 1- 3,840 - 100 Hz

Home] 1- 3,840 - 100 Hz
Acceleration] 0-65,534 - 100 counts
Jog { Ext 2-10,000 - .01%

Velocity | Mode 2-10,000 - 01%

Home 1 2-10,000 - 01%
Acceleration E-stop 0-65,534 1000 kHz/sec
Acceleration Limits 0-65,534 4000 kHz/sec
Index 1-2,147,483,648 500 counts

Go 0-1,073,741,824 0 counts
Normalize 0-1,073,741,824 0 counts

Delay [time] 0-65,535 0 msec

Delay [M] 0-4,294,910,759 0 motion counts
Delay [R] 0-4,294,910,759 0 reference counts
<Label> 20y to 7Ey - -

Tuning Parameters

Position Loop Gain 0-255 2 -

Velocity Loop Gain 0-255 2 -
Feedforward Gain 0-255 0 -

External Output Gain 0-255 0 -

Velocity Loop Compensator 0-F 0 -

Position Loop Compensator 0-F 0 -

Register Parameters

T Register - 0 trace status

W Register - 0 write enable
X Register - 08 motion parameters
Y Register - 00 special motion
Z Register - 10 communications
Mode 0- 0 servo-status
Baud rate 0

4
-8 0 (autobaud) '

* PMCO001d -51- ORMEC

6.4 OPERATION
6.4 EDITING FUNCTIONS USED DURING PROGRAM MODE

MPL commands can be combined in a motion "Program" using the Program command. To write or edit
an MPL Program, type P<cr> or P<label><cr> from the keyboard when at the =} prompt.

Cursor Right TAB (CTRL-I) or CTRL-Y moves the cursor to the right one character. Typing a
TAB when the cursor is at the end of 2 line will move the cursor to the beginning
of the next line.

Cursor Left BACKSPACE (CTRL-H) moves the cursor to the left one character. Typing a
BACKSPACE when the cursor is at the beginning of a line will move the cursor to
the end of the previous line.

Cursor Down LINEFEED (CTRL-J) moves the cursor down a line.

--Cursor Up DEL or CRTL-U moves the cursor up a line. Type a DEL when at the cursor is in
the middle of a line to move it to the beginning of that line.
End of Line CTRL-R moves the cursor to the right end of the current line.
Change Line To change a line in a motion control program, position the cursor at the point to

be changed and type the desired information. Underscores (_) may be used to mark
program buffer space for future parameter changes or MPL commands.

Kill Line CTRL-K deletes all characters from the cursor to the end of the line. It can be
used to delete an entire line or only unwanted characters at the end of the line.
Type CTRL-K with the cursor positioned at the end of a line to delete the "end-
of-line" marker and append the next line to the current line.

Add Line Type <cr> at the beginning of a line to insert a "blank" line before it; then type
the data for that line. Since "blank” lines are not allowed, immediately typing a
second <cr>, or moving the cursor, will eliminate the "blank” line just created.
Type <cr> in the middle of a line to "split" the line into two lines.

Exiting The ESCAPE key is used to exit the program command.

Program Erase Typing a } in column 1 (immediately after a <cr>) will erase the program buffer,
starting at the current location, and exit the program command. Note: executing

this command will erase all information from the cursor to end of the program
buffer.

6.5 STATUS REGISTERS

There are three status registers, designated X, Y, and Z. The purpose of the status registers is to
allow the user to conveniently change the configuration of the PMC to meet individual motion control
application needs. Each status register contains eight "bit switches”, which when "set" or "cleared”
will change the operation of the PMC is some way.

The status registers are examined or configured with the S command. To examine them powerup the

PMC in interactive command mode and type the following sequence. Bold print indicates the seq-
uence that you type and regular print is the information sent by the PMC.

PMCo001d -52- ORMEC

6.5 OPERATION

MPL3.0b

=)}S? X=08 Y=00 Z=00 The three parameters returned by the PMC are two digit hexadecimal values
specifying the bit patterns in each of the status registers. The first digit of
each pair indicates the value of bits 7-4 of the register and the second digit
indicates the value of bits 3-0, respectively.

The following chart indicates the relationship between the two digit hexadecimal values and the
individual "bit switches" of the Status Registers.

Status Register Bit Assignments

| | Bit | i 8it |
] First |_Number | Second |__Number |
| Hex | | Hex |]
| bigit | 7654 | pigit | 3210 |
I | l | I
I I I I I
| og 6000} o0g (000
| 1g (0001] 1y |0001 |
| 2g- |0010| 2y jco1to|
| 3g (0011] 3y jJoo11]|
I | I I I
] 4g 10100] 4y |o100 |
| Sg 0101] 5g |0101 |
| 6g 0110 ¢y jot10|
| 7 10111 7 [0111]
| | | | I
| 8 {(1000] 8y | 1000 |
| og 11001] 9y 1001
| Ag | 1010] Ag [1010]
| Bg (1011] Bg 1011
I | | I |
| cg [11060] ¢cg |1100]
| bg |1101] pog [1101]
| Eg |1110] Eg [1110]
| Fg 11111 Fg 1111
| 1 | 1 |

1 indicates that the bit switch is set or on
0 indicates that the bit switch is cleared or off

To determine the hexadecimal values for the first and second digits, find the desired bit pattern of
half of the register and look up the hexadecimal value for that bit pattern in the table. e.g. the
command SX03 will set the bits in the X Register to 0000 0011.

See Section 6.9 for a detailed description of the various options that can be selected using the Status
Registers.

PMCoeold -53- ORMEC

6.5 OPERATION

Creating Special Motions Using the Y Register

The PMC’s Y Register offers users a variety of methods for starting and stopping, allowing a wide
range of motion profiles. The illustrations below show some of these options and how the Y reg-
ister’s Bits 0-5 can be manipulated to utilize sensor inputs (SENSIN signal) and encoder reference
points to create unique motion profiles. Note that all the options are not shown. Also, a linear
acceleration profile is assumed throughout. Starting and stopping bits operate totally independent of

reference

each other.

STATUS COMMAND----SY00 COMMENT
I ! I
11 e s s e s s s s e s e e s e | A - Command initiates motion |
b . I I
Il - . | B - Deceleration begins on |
| 1. | calculated distance |
e — | |
(| [| C - Specified index distance |
| A B ¢ | completed |
I ! l

. STATUS COMMAND----SY02 COMMENT

| I |
11 e e e e s e e | A - Command initiates motion |
| | !
I | B - Deceleration begins on |
11 e e e e e | calculated distance |
Fl. S |
11 ! | | € - Decelerate to jog speed |
| A 8 C) | and continue [
! - | |
| |ER|_ | D - Stop jog on encoder |
| l |
! | l

PMCo0014d -54- ORMEC

6.5 OPERATION

STATUS COMMAND----SY06 COMMENT

A - Command initiates motion

B - Deceleration begins on

reference

! ! |
I | I
P ! !
I | |
T T | calculated distance |
|1 o | !
| (| | | C - Decelerate to jog speed |
| A B C D] and continue |
| - | l
| Is|_ | b - Stop jog on sensor |
| | |
STATUS COMMAND----SY08 or SYOC COMMENT
l I I
T P I | A - Command initiates motion |
I I I
i | 8 - Deceleration begins on |
(I | sensor |
I | I
] || | € - Motion completed |
| A B C |]
! - | I
| Is| ! I
I ! |
STATUS COMMAND----SY0A COMMENT

I I !
I | A - Command initiates motion |
bl I I
[. | 8 - Deceleration begins on |
1 T | sensor |
1. — | |
| 1| | | C - Decelerate to jog speed |
| A 8 C] | and continue]
! - - | I
| Is| [ER|_ | D - Stop jog on encoder |
! | !
I I I

PMCo001d -55- ORMEC

6.5 OPERATION

STATUS COMMAND----SYOE COMMENT

Command initiates motion

»
»

B - Deceleration begins on
sensor

|

N

'l

|
-
1. W
R '
| A

|

l

|

C - Decelerate to jog speed

and continue
|;| Igl___ D - Stop jog on sensor

STATUS COMMAND----8Y20 COMMENT

| | |
1 | A - Motion starts on |
| 1 | Encoder Reference |
- | [
Ii- | B - Deceleration begins at |
|1 o calculated distance |
1 [I I
| A . B C | C - Specified index distance |
I | completed |
|_1ER] | !
| | |
STATUS COMMAND----SY28 COMMENT

| | |
T R | A - Motion starts on]
| |] Encoder Reference |
[I [
IR | B - Deceleration begins on |
| 1. e sensor |
I [| |
| A 8 C | € - Motion completed |
I — _ ! |
|_|ER]| Is| I I
! | I

PMC001d -56- ORMEC

6.5

PMCo01d

STATUS COMMAND----SY30

COMMENT

l

|] | A - Motion starts on

] . | Sensor

L .

11 - . | B - Deceleration begins at
I} 1 calculated distance

[N

[A B C | C - Specified index distance
| -] completed

I_Isl I

I !

STATUS COMMAND----SY36 COMMENT

A - Command initiated on
sensor

B - Deceleration begins at

! |
| I
l I
| |
N [
! 1 calculated distance
I I l |
] 8 ¢ v} | € - Decelerate to jog speed
| - _ | and continue
[-Is] sl |
| | o - Stop jog on sensor
! I
.57~

OPERATION

ORMEC

6.8

6.6 MACHINE 1/0 OPERATION

fr'.The Machine 1/O Interface of ORMEC's Programmable Motion Controllers provides 16 TTL level

®

digital IO points. These 1/O points include 11 discrete inputs and 5 discrete outputs, and are

designed to be compatible with industry standard "OPTO-22 style" optically isolated I/O Modules. For

logical compatibility with those modules (including the LEDs on them), the inputs and outputs are
considered "asserted” or "on" when at 0 volts (TTL low) and *not asserted" or "off” when at 5 volts

(TTL high).
6.6.1 General Purpose Machine Inputs

Eight of the eleven machine inputs may be read and used to control "program flow" by the Branch,
Exit, Function & Until commands. These commands can specify any combination of the eight inputs
to be tested using a <mask> parameter of two hexadecimal characters. A single command can test for
individual selected inputs to be either "on" or "off” using the test <status> parameter. (also two
hexadecimal characters) ‘

Bits in the <mask> parameter that are set to 1 cause the corresponding machine input to be "tested”
by the MPL command. Mask bits set to 0 cause the corresponding machine input to be ignored by
the command. Setting a bit of the optional <status> parameter to | causes the command to "test" for
the corresponding input to be "on", as long as it is selected for test by the <mask> parameter.
Conversely, setting a <status> bit to 0 causes the command to "test" for the corresponding machine
input to be "off". If the optional <status> parameter is not specified, all inputs selected by the
<mask> parameter will be "tested" for the "on" condition.

6.6.2 Special Purpose Machine Inputs

Three of the discrete Machine Inputs have a prespecified affect on the operation of the PMC-903 or
PMC-904. Asserting the STOP input will stop both commanded motion and MPL program execution.
Asserting the EXECUTE input will cause an MPL program to start. This program to be started is
selectable from the Machine I/O using either a five bit address or the select (SEL) input.

6.6.3 Machine Qutputs

The Output command can be used to selectively affect any or all of the four General Purpose
Machine Outputs, as defined by the <mask> parameter. In addition, a single Output command can be
used to turn "on" or "off” multiple outputs by specifying their desired state with the <status>
parameter.

Setting a bit in the <mask> parameter to | causes the corresponding machine output to be affected
by the command. Conversely, setting a bit in the <mask> parameter to a 0 causes the corresponding
output to be unchanged by the command. Setting a bit in the optional <status> parameter to a | or
0 causes the Output command to turn "on" or "off" the corresponding machine output, as long as it
was selected by the <mask> parameter. If this parameter is not specified, all the selected outputs
will be turned on. The fifth machine output is the READY output which is asserted whenever the
PMC is at the interactive level and "ready" to execute either a command or a motion program.

6.6.4 Other Discrete I/0 Options
The Machine I/O Interface can also be configured for special automatic operation by setting up
option parameters in the X and Z registers. The available options include hardware +/- limits,

program select line, fault output and in motion output. Refer to section 6.9.17 for more detailed
information.

PMCo01d -58- ORMEC

6.7 OPERATION
6.7 MULTI-AXIS COMMUNICATIONS USING THE SERIAL COMMUNICATIONS BUS

PMCs allow hardware Axis-ID selection for Serial Communications Bus support. This feature supports
Axis-IDs of A - N (14 devices) based on the strapping configuration of header J6 Pins 1-8. See
Section 4.6 for the jumper strap to Axis-ID mapping. The Axis-ID may also be set in non-volatile
memory by the user, using the "=" command. To do this, Bit 5 of the Z-Register be set before the
Axis-ID can be enabled or changed from the Serial Communications Interface. This is to help prevent
inadvertent use of the "=" command by the user.

MULTI-AXIS SYSTEMS

......................... g -‘4
HOST
COMPUTER 4
PMC PMC PMC
OPTICHNAL
e
rlgEFERENE‘,E MOTION REFERENCE BUS

6.7.1 Using Serial Bus Communications

Assuming that some, but not all, of the jumpers were in place at powerup, the PMC identified itself
as an axis between A and N, and is in the inactive Serial Bus Communications mode.

The significance of enabling this communications mode is that the PMC will not send data out the
Serial Communications Interface until it recognizes its Axis-ID being selected for communications.
This means that once the feature is enabled, the user must send a two character "select axis"
sequence before the PMC will communicate,

At powerup, a host computer or terminal must first send a sequence of "carriage returns” long enough
for the PMCs to determine their baud rates (See Section 5.1), and then send the "select axis"
sequence as shown below.

Syntax: <CTRL > «<id>

where <CTRL }> is ASCII (1Dy) and
<id> is the Axis-ID of the unit selected

Executing the above command selects the specified PMC for communications with the host. TIts
communications driver ICs are enabled, and it will send and receive data characters with the host
computer and properly operate the flow control line. In addition, the normal "prompt” of =} will be
changed to <id>}, aisplaying the Axis-ID of the active PMC.

All PMCs not selected automatically assume the inactive Serial Bus Communications Mode with their 'W
communications driver ICs disabled. They will continue to control motion or execute MPL programs

PMCO0014d -59- ORMEC

6.7 OPERATION

from the Program Buffer, but will ignore communications at the SCI interface until selected. In
addition, any messages generated while in this mode will be lost.

"Binary In - Binary Out" communications mode, as selected by Status Register Z, Bit 7 is not
supported when serial bus communications mode is used. The other three modes are fully supported.

6.7.2 Assigning an Axis-ID from the Serial Communications Interface

Assuming that all the straps are in place at powerup, the PMC operates in a mode where a Serial Bus
Axis-ID can be set in non-volatile RAM from the Serial Communications Interface using the =
command, as long as Bit 5 of the Z-Register has first been set. The Z-Register is manipulated using
the Set/Show command. See Section 6.5 of the PMC Manual for a more complete description of the
Status Registers. If the Z-Register, Bit 5 is not set (default) the Axis-ID will not be assigned. In
this case, a D3 Error (Parameter Write Protected) will be issued by the PMC.

The syntax of the command used to assign an Axis-ID is as follows:
Syntax: = <id> <cr>

where <id> most printable ASCII characters greater than a space (20y) except ! and ? and =.
Note: All alphabetic Axis-IDs must be upper case.

<display> ? the <id> stored in non-volatile RAM will be displayed
= the <id> will be set to = and Serial Bus Communications will be disabled

other the Axis-ID will be set to the specified printable ASCII character, the
Serial Bus Communications Mode will be enabled, and the PMC'’s serial
communications will become inactive

WARNING: If you inadvertently assign an Axis-ID and don’t know what it is, you will lose communi-
cations with that PMC. The PMC becomes "inactive" on the bus (since you cannot specify a "select
axis" sequence to make it the active sender & receiver).

This situation may be remedied in two ways:

1) If you have an MIS-200, hold the STOP button in and reset (or powerup) the PMC. It will
powerup without Serial Bus Communications Mode enabled. The = command may then be used to
either examine the Axis-ID present in the non-volatile RAM, disable Serial Bus Communications
Mode, or reassign a new Axis-ID.)

2) Power down, and remove the jumpers from Header J6, and it will have the same effect as holding
the STOP button during powerup.

Once the Axis-ID has been set in non-volatile RAM, and as long as the jumpers are still in place,
the PMC will automatically identify itself with the non-volatile RAM based Axis-ID and enable
Serial Bus Communications Mode in the inactive state on powerup. Its operation in this mode is
as described above in Section 6.7.2.

PMC001d -60- ORMEC

6.8 OPERATION

6.8 MOTION REFERENCE BUS

The Motion Reference Bus allows a PMC based motion control system to operate in synchronism with
another PMC or other equipment having a digital position encoder. This allows a host computer to
conveniently control multiple servomotors with “linear interpolation”, in addition to several other
general purpose capabilities.

This is accomplished by referencing a PMC’s motion command pulses to a digital puise train present
at the EXREF input at the System Axis Interface (TM2). The pulses present at this external motion
pulse reference input are normally the motion pulses from another- PMC. These pulses are driven by
a tri-state RS-422 differential line driver (U29C), and received by an RS-422 differential line receiver
(U28A). .

For an exampie of how this synchronization is accomplished, consider three PMCs which have their
EXREF and EXREF signals bussed together by a twisted pair cable. In the powerup default mode, all
PMCs are deriving their motion command puises from their respective crystal controlled oscillators,
and therefore working independently.

Now assume that we want PMC A to be the "motion master” and PMCs B and C to be "slaves” and go
half as far as PMC A while PMC A does an index. Bit 4 of Status Register X (MOTION BUS
MASTER), should be set on PMC A. This enables the tri-state driver (U29C) to drive the Motion
Reference Bus. Next, Bit 6 of Status Register X, (MOTION BUS SLAVE) of the slaves should be set
to select the external mode, allowing them to use position reference information received by line
receiver U28A for deriving their respective position reference command information.

The parameters for the slave PMCs are now in a format that references the distance traveled by an
external reference. Acceleration is expressed in units of 100’s of external pulses on the Motion Bus
from 0 to 65534 (0 to 6,553,400 pulses) and speed is expressed in units of hundredths of a percent of
external reference frequency from 1 to 10000 (.01 to 100.00%).

The slave acceleration should now be set to zero and the slave commanded to "Jog" at a "jog
velocity" of 50.00% of the Motion Bus frequency. This can be done by sending A0 and J5000+
commands to the slave. An index of the master will now also cause the slave to move half as far.
One can extend this concept of externally referenced motion to implement a wide variety of coor-
dinated motion applications such as electronic lineshafts, camshafts etc.

When the PMC is commanded to make an index in the external mode, no minimum index distance
calculation is made. Since the frequency of the external reference is unknown, it is the user’s
responsibility .to comply with the following specification:
for a=0: minimum distance = .012*f * v
for a>0: minimum distance = (2/9.8 + f) * v/10
where: a - acceleration in 100 Hz
v - velocity in .01 %

f - external frequency in MHz

Note: Any slave axes must be set one frequency range higher than the master axis. For example, if
the master axis is set in the 192kHz range, then the slave axes should be set in the 384kHz range.

PMCo001d -61- ORMEC

o

—
s
4

6.9 OPERATION

6.9 MPL COMMAND DESCRIPTION

Unless specifically stated otherwise, the following command descriptions apply to the default condition
of internal mode (MOTION BUS SLAVE reset) and 192 kHz velocity range (VELOCITY RANGE SELECT
= 10). For a description of other non-default options, see Section 6.3. Throughout this section, the
following symbols are used:

< > - designates a variable
- the enclosed item (or items) may be repeated multiple times
[] - the enclosed item (or items) are optional
| - designates the logical OR operator
<cr> - designates a carriage return)

6.9.1 @ - Prbgram Label Command
Purpose: establish a single-letter program label in the program buffer
Syntax: @ <label> <text> <cr>
<label> §ingle byte program label; The label can be any ASCII character between an ! (21y) and a
(7Eg). The @ character (40y) is a unique programming label, in that this program will
automatically execute on powerup or software reset of the PMC.

<text> any number of printable ASCII characters; If the label is not present it is recommended
that the first character be an underscore (_) so that extra program labels are not created.

~
‘ Examples: @_This_is_a_comment_line

@X_Comment_after_a_program_label ’X’
@@_This_is_the_beginning_of _the_"powerup”_routine

PMCO001d -62- ORMEC

6.9 OPERATION
6.9.2 A - Acceleration Command

Purpose: set or examine acceleration rate for motion, limits, contour or E-stop ‘

Syntax: A <rate> <cr> | A <display> s
A [<relative> <rate>] <cr>
AL <rate> <cr> | AL «display>
AL [<relative> <rate>] <cr>
AQ <rate> <cr> | AQ <display>
AQ [<relative> <rate>] <cr>
AS <rate> <cr> | AS <display>
AS [<relative> <rate>] <cr>

<rate> integer (1 to 65,535) in kHz/sec specifying the acceleration rate (default: 100 kHz/sec);
See Section 6.3 for other ranges.
<«display> ! display current system acceleration rate (zero if at rest or top speed)

? display last entered acceleration rate
<relative> P increase the magnitude of the rate by the specified <rate>
M decrease the magnitude of the rate by the specified <rate>

Examples: A3500<cr> Set acceleration rate to 3500 kHz/sec or Hz/msec
AL6000<cr> Set acceleration rate for a limit stop to 6000 kHz/sec or Hz/msec
AS400<cr> Set acceleration rate for the stop input to 400 kHz/sec or Hz/msec
AQ100<cr> Set acceleration rate for a contour motion stop to 100kHz/set
AP300<cr> Increase the magnitude of the current acceleration by 300 kHz/sec or

Hz/msec
A? Display last entered acceleration rate -
A! Display current system acceleration rate '
AL! Display current limit acceleration rate

PMCo01d -63- ORMEC

6.9

OPERATION

6.9.3 B - Branch (GoTo) Command

. Purpose: transfer MPL program execution to a program label

Syntax: B <label> [<condition>] <cr> |
B <label> <op> <position> [<direction>] <cr>

Purpose: Transfer MPL program execution to a specified program label either:

- unconditionally
- based on a specified machine input condition (up to 8 inputs high or low)
- based on a specified test of absolute position

<label> MPL program label (see @ command description)

<condition> in the format <mask> [/<hex>], defining the required state of the general purpose inputs
IN1'..IN8' IN10'..IN80’ for the Branch command to execute. IF the specified input condi-
tion is true, THEN the command following the specified program label will be executed
ELSE execution will continue with the following MPL command. IF <condition> is not
specified, THEN MPL program execution is unconditionaily transferred to the specified
MPL program label.

<op> the operator specifying greater than or less than <position> as the condition to be tested
against
> greater than the specified absolute position. If <op> is > then the branch will be

, -
()
<position>

<direction> +

done if the current absolute position is greater than <position>. "Greater than" is
defined as "more positive than the current position", or further in the plus (+)
direction of travel.

less than the specified absolute position. If <op> is < then the branch will be done
if the current absolute position is less than <position>. "Less than" is defined as
"more negative than the current position”, or further in the minus (-) direction of
travel.

integer (0 to 1,073,741,823) counts specifying the absolute position to test against.
Default is 0 if not specified.

to specify <position> as a positive integer (default)
to specify <position> as a negative integer

Examples: BQ<cr> Uunconditionally branch to program label 'Q’
BQ20<cr> Branch to program label *Q’ if input Al is asserted
BQ1/0<cr> Branch to program label 'Q’ if input Il is not asserted

BL>200+<cr> Branch to program label 'L’ if the PMC-based system is at an absolute

position greater than 200 counts in the positive direction. e.g. 201, 202,
203, etc.

BL<100-<cr> Branch to program label 'L* if the PMC-based system is at an absolute

PMCOo01d

position less than 100 counts in the negative direction. e.g. -101, -102,
-103, etc.

-64- ORMEC

6.9

OPERATION

6.9.4 C - Contour Command

Purpose: create high performance profiled motion

Syntax: C <timebase> <distance>
C <ref-distance> <distance>

Purpose: C <timebase> <distance>

The Contour command allows specification of a general motion-time profile in
<timebase> segments over a range from 1.33 to 341.33 msec. These linear "position
vs. time" segments may be commanded in real time by a host computer through the
serial communications interface or "Programmed" in the MPL program buffer for later
execution by the PMC.

C <«ref-distance> <distance>

<distance>

<ref-distance>

<timebase>

PMC001d

The Contour command also allows specification of a general motion-motion profile in
<ref-distance> increments of the motion reference bus over a range from 256 to
65,536 motion reference pulses. These linear "position vs. position” segments may be
commanded in real time by a host computer through the serial communications
interface or "Programmed" in the MPL program buffer for later execution by the
PMC. This capability allows "multi-axis contouring” capability which can be refer-
enced to a common "master axis controller” or to an external source of motion
information.

Number of relative encoder counts

A value from 0-9, A-H which specifies the number of relative distance counts of the
motion reference bus for the length of a position/position segment in the Contour
command.

A value from 0-9, A-H which specifies the length of a position/speed segment in the
Contour command in increments of 1.33 ms.

This command is designed to create high performance profiled motion which is
defined and coded by a host computer. The coded Contour profile is then either
downloaded into the program buffer or sent to the PMC via the serial communi-
cations interface in real time. It is not practical to define Contour data manually.
For more information refer to Section 6.11, entitled "Creating Complex Motion
Profiles".

-65- ORMEC

6.9

OPERATION

6.9.5 D - Delay Command

Purpose:

Syntax:

<time>

<distance>
<sync>

Examples:

PMC001d

delay a specified time interval or number of counts before executing the next command

D[T] [<time>] [<sync>] <cr>
DM [<distance>] [<sync>] <cr>
DR [<distance>] [<sync>] <cr>

time, in milliseconds. If the T is not specified it is assumed that the delay command is
for time.

commanded motion, in counts. The system must be at steady state speed to use this
command.

reference clock, in counts. The system must be at steady state speed to use this
command.

integer (0 to 65,535) in milliseconds or counts, specifying the amount of time to be
delayed before executing the next command; The resolution of the internal timer is 4
msec and due to the asynchronous nature of the delay command there is an uncertainty
of 4 msec. e.g. Since <time> is "rounded up" a DI command will delay 4 to 8 msec. A
DO command delays less than 1 msec. .

integer (1 to 4,294,910,759) specifying the number of counts or reference clocks to delay
, synchronizing character which causes the PMC to wait for the system motion to stop

. synchronizing character which causes the PMC to wait for the system motion to
achieve a steady state speed _
synchronizing character which causes the PMC to wait for the system motion to
complete steady state speed

Note: An ESCAPE entered during the execution of this command wiil end this command
with a DO error. (See Section 6.5.1)

D16<cr> Delay for 16 msec

DT16<cr> Delay for 16 msec, identical to previous syntax

D24,<cr> Delay for 24 msec beginning after motion stops

D300;<cr> Delay 300 msec after reaching steady state speed

DM10000;<cr> Delay for 10000 counts of commanded motion after reaching steady
state speed

DR5000;<cr> Delay for 5000 counts of the reference clock after reaching steady

state speed. If in internal 192kHz mode this command would delay
5000 counts of the 192kHz clock. If in external mode this command
would delay 5000 counts of the motion reference bus.

-66- ORMEC

6.9

OPERATION

6.9.6 E - Exit Command

Purpose:

Syntax:

Purpose:

<condition>

<0op>

<position>

<direction>

Examples:

return from subroutine to statement after function call

E [<condition>] <cr>
E <op> <position> [<direction>] <cr>

Exit (return from subroutine to statement after function call) either:
- unconditionally
- based on a specified machine input condition (up to 8 inputs high or low)
- based on a specified test of absolute position

in the format <mask> [/<hex>], defining the required state of the general purpose inputs
IN1'..IN8’ IN10"..IN8O’ for the Exit command to execute. IF the specified input condition
is true, THEN the command following the specified program label will be executed ELSE
execution will continue with the following MPL command. IF <condition> is not speci-
fied, THEN MPL program execution unconditionally returns or exits.

the operator specifying greater than or less than <position> as the condition to be tested

against:

> greater than the specified absolute position. If <op> is > then the exit will be
executed if the current absolute position is greater than <position>. "Greater than"
is defined as "more positive than the current position", or further in the plus (+)
direction of travel.

< less than the specified absolute position. If <op> is < then the exit will be executed
if the current absolute position is less than <position>. "Less than" is defined as
"more negative than the current position”, or further in the minus (-) direction of
travel.

integer (0 to 1,073,741,823) counts specifying the absolute position of the system to test
against. Default is 0 if not specified.

+ to specify <position> as a positive integer (default if not specified)
- to specify <position> as a negative integer

E<cr> Unconditional exit (return from subroutine)
E8«cr> Exit (return) if input IN8’ is active (low)
E3/0<cr> Exit (return) if inputs IN1* and IN2’ are inactive (high)

E>2000+<cr> Exit the subroutine if the PMC-based system is at an absolute position
greater than 2000 counts in the positive direction.

Note: This command is valid only in program mode.

PMCo001d

-67- ORMEC

6.9
69.7 F -
Purpose:

Syntax:

Purpose:

<label>

OPERATION

Function Command

call a subroutine

F <label> [<condition>] <cr> |
F <label> <op> <position> [<direction>] <cr>

Call a function (subroutine) either:
- unconditionally
- based on a specified machine input condition (up to 8 inputs high or low)
- based on a specified test of absolute position

MPL program label (see @ command description)

<condition> in the format <mask> [/<hex>], defining the required state of the general purpose inputs

<op>

<position>

<direction>

Examples:

CAUTION:

PMC001d

INI'..IN8’ IN10'..IN80’ for the Function command to execute. IF the specified input
condition is true, THEN the command following the specified program label will be
executed ELSE execution will continue with the following MPL command. IF <condition>
is not specified, THEN MPL program execution is unconditionally transferred to the
specified MPL program label.

the operator specifying greater than or less than <position> as the condition to be tested

against:

> greater than the specified absolute position. If <op> is > then the branch will be
done if the current absolute position is greater than <position>. "Greater than" is
defined as "more positive than the current position", or further in the plus (+)
direction of travel.

< less than the specified absolute position. If <op> is < then the branch will be done
if the current absolute position is less than <position>. "Less than" is defined as
"more negative than the current position”, or further in the minus (-) direction of
travel.

integer (0 to 1,073,741,823) counts specifying the absolute position to test against.
Default is 0 if not specified.

+ to specify <position> as a positive integer (default)
- to specify <position> as a negative integer

FE8<cr> Call subroutine "E" if input IN8’ is low
FE8/0<cr> Call subroutine "E" if input IN8® is high
FE3/0<cr> Call subroutine "E" if inputs IN1’ and IN2’ are high

FE13/0<cr> Call subroutine "E" if input IN10’, IN1’ and IN2’ are high
FA>200+<cr> Call subroutine "A" if the PMC-based system is at an absolute position
greater than 200 counts in the positive direction.

Nesting of functions is supported only three levels deep.

-68- ORMEC

6.9

OPERATION

6.9.8 G - Go Command

Purpose:

Syntax:

<position>

<direction>

<Sync>

<display>

<time>

<Ccr>

Examples:

PMCo01d

move to the specified absolute position of the system

G <position><direction> [<sync>] <cr> | G <display> [<time>] <cr>

integer (0 to 1,073,741,823) counts specifying the absolute position of system (default: 0)

+

?
*

%

specify positive sign and perform motion calculations (system must be at rest before
this character is entered)
specify negative sign and perform motion calculations (system must be at rest before
this character is entered)

synchronizing character which causes the PMC to wait for the system motion to stop

synchronizing character which causes the PMC to wait for the system motion to
reach constant speed or complete.

synchronizing character which causes the PMC to wait for the system motion to
complete steady state speed

display the current absolute position of the system. This is the commanded position
adjusted by the current position error.

display the currently commanded absolute position of the system

stop system motion

repeatedly display the current position (G!) until an SCI character is received.

the rate in msec at which the % output is repeated. (default: 100)

move to the specified absolute position <position> using the motion parameters in the
motion buffer. The direction of travel is determined by the current absolute position and
the new commanded position.

G! Display the present absolute position of the system
G4<cr> Go to the absolute zero position of the system
G200-<cr> Move to absolute position -200

G* Stop system motion

G%-<cr> Display current absolute position every 100 msec.

-69- ORMEC

otz
KN
»

6.9

OPERATION

6.9.9 H - Home Command

Purpose:

Syntax:

<speed>

<direction>

<sync>

<display>

<time>

<relative>

Examples:

PMCo01d

move to the nearest encoder reference or sensor

H [<speed>] [<sync>] <direction> | H <display> [<time>] <cr>
H [<relative> <speed>] <cr>

integer (1 to 1,920) in 100 Hz units specifying the homing speed (default: 2.0 kHz); See
Section 6.3 for other ranges.

<+

!
?
%

move at the homing rate in the positive direction until encoder reference or sensor
is detected (see EXTERNAL STOP SELECT bit of Y register)

move at the homing rate in the negative direction until encoder reference or sensor
is detected (see EXTERNAL STOP SELECT bit of Y REGISTER)

stop system motion -

synchronizing character which causes the PMC to wait for the system motion to stop
synchronizing character which causes the PMC to wait for the system motion to
achieve a steady state non-zero speed

synchronizing character which causes the-: PMC to wait for the system motion to
complete steady state speed

display current system speed
display last entered home rate
repeatedly display the current system speed until an SCI character is received.

the rate in msec at which the % output is repeated. (default=100)

P
M

increase the magnitude of the speed by the specified <speed>
decrease the magnitude of the speed by the specified <speed>

H15+ Move in the positive direction to the home position at a velocity of 1.5 kHz

H,-

Wait for system to come to rest before homing in the negative direction

HMd<cr> Decrease the magnitude of the homing speed by .4 kHz

H‘

Stop system motion

-70- ORMEC

6.9

6.9.10
Purpose:

Syntax:

<distance>

<direction>

<sync>

<display>

<time>

<relative>

Examples:

PMCO001d

I - Index Command

OPERATION

move the specified distance from the current position

I [<distance>] #<direction># [<sync>] <cr>
I [<relative> <distance>] #<direction># [<sync>] <cr>
I <display>[<time>] <cr>

integer (1 to 2,147,483,647) specifying the relative distance to move (default: 500 counts);
If this distance, designated optional above, is not specified, the system will move the
distance that is currently specified in the motion buffer.

+ move the specified relative distance in the positive direction using the acceleration
and velocity parameters in the motion buffer

- move the specified relative distance in the negative direction using the acceleration
and velocity parameters in the motion buffer

* stop system motion

, synchronizing character which causes the PMC to wait for the system motion to stop
. synchronizing character which causes the PMC to wait for the system motion to
reach a constant speed or complete motion
synchronizing character which causes the PMC to wait for the system motion to
complete steady state speed

! display the distance remaining in the current or last index

-~

display the last entered index distance

% repeatedly display the remaining distance in the current or last index (repeating I!
output) until an SCI character is received.

the rate in msec at which the % output is repeated.

P increase the magnitude of the distance by the specified <distance>
M decrease the magnitude of the distance by the specified <distance>

1250<cr>
I+
I,-

1300,+
L+,-
IP300<cr>
I!

1?

I.
1%200<cr>

Set the index distance in the motion buffer to 250 counts

Index the system the previously set distance in the positive direction
Wait for last motion to end; index the previously set distance in the
negative direction

After the last motion is complete; index the system 300 counts in the
positive direction

Wait for last motion to end; index in the positive direction; after this
motion is stopped; index in the negative direction

Increase the magnitude of the index distance in the motion buffer by
300 counts

Display the number of remaining counts in the current move

Display the previously specified index distance

Stop the current motion

Display the number of remaining counts in the current move. Update
the display every 200 msec.

-71- ORMEC

6.9

OPERATION

6.9.11 J - Jog Command

» . Purpose:

Syntax:

<speed>

<direction>

<sync>
<display>
. <time>

<relative>

Examples:

’ ‘

PMC001d

move at the specified jog speed

J [<speed>] #<direction># [<sync>] <cr> | J <display> [<time>] <cr>
J [<relative> <speed>] #<direction># [<sync>] <cr>

integer (I to 1,920) in 100 Hz units specifying the jog rate (default: 10.0 kHz); See
Section 6.3 for other ranges.

+ jog in the positive direction at the specified speed; If the speed is not specified,
the jog speed in the motion buffer will be used.
- jog in the negative direction at the specified speed; If the speed is not specified,
the jog speed in the motion buffer will be used.
* stop system motion; System motion can be stopped by typing any character other
a

— pe) :) P Y Y

than , or ; or <cr> if the PMC is running and still in the middie of a J command.

, synchronizing character which causes the PMC to wait for the system motion to stop
. synchronizing character which causes the PMC to wait for the system motion to
reach a constant speed or be completed
synchronizing character which causes the PMC to wait for the system motion to
complete steady state speed

! display current system speed
display last entered jog speed
% repeatedly display the current system speed until an SCI character is received

-~

the rate in msec at which the % output is repeated

P increase the magnitude of the speed by the specified <speed>
M decrease the magnitude of the speed by the specified <speed>

Note: The acceleration rate and jog speed can be changed while a jog motion is in
progress by entering the new values and initiating another jog command.

J! Display the current system speed

J? Display last entered jog speed

J36,+ Wait until any motion which may be underway is complete, and then jog

. in the positive direction at 3.6 kHz

J+ Jog in the positive direction at previously specified jog speed

J,- Wait for the system to come to rest before jogging in negative direction

JM100<cr> Decrease the magnitude of the system jog rate by 100kHz.

JP10- Increase the magnitude of the system jog rate by 10kHz and start
motion in the negative direction

J* Stop system motion

J,-"+- Wait until end of last motion; jog in negative direction; stop; jog in

positive direction; stop; continue jogging in negative direction

-72- ORMEC

6.9

OPERATION

6.9.12 K - Kill Command

Purpose:

Syntax:

<time>

Examples:

kill any system motion unconditionally

K [<time>] <cr> .

integer (0 to 65,535) in milliseconds specifying the time allowed for system deceleration
at the AL rate, if the system has not stopped after the time has expired, an immediate
stop will be commanded.

K1000<cr> Kill any system motion after one second is allowed for deceleration
K<cr> Kill system motion immediately

6.9.13 L - Loop Command

Purpose:

Syntax:

<label>
<count>

PMCO001d

transfer MPL execution to a program label a number of times

L [<label> <count>] <cr>
L <label> [<loop counter ID>] <count> <cr>

see @ label command description
integer (0 to 65,535) number of times to loop to the specified label

Note: When the loop command is used from interactive mode, the <count> given on the
command is used to replace the <count> on the first loop command encountered in the
program specified by the <label>. For example, if you have the following program

@T
I+
LTS
E

then executing the command LT999 <cr> from interactive mode will loop program T 999
times, resulting in 1000 indexes being performed. If, however, you executed the above
program using the B command, by entering BT, then you would get 10 indexes performed.
Ten indexes are performed because the first one was performed before the Loop command
was encountered, and Looping to program label T nine times therefore results in a total
of 10 indexes.

An L<cr> will reset the loop counter to 0. This feature is only needed when you are
executing a program and that program exits from a loop before the loop counter reaches
0. This can happen using the following program:

@G

I+

BWI
1.G2999
@W

I,-
LWI19

The routine 'G’ does 3000 indexes in the + direction as long as general purpose machine ‘ "
input IN1’ stays high. If INI’ stays high, then when all 3000 indexes are done the 'W’

-73- ORMEC

6.9 OPERATION

routine is executed. If INI’ goes low, then the program branches to routine 'W’, having
executed less then 3000 indexes. In this case, if the loop counter is not reset then the
'W* loop will not function correctly.

'/ <loop counter ID>

the character X, Y, or Z which specifies the loop counter to be used. This allows loops
to be nested up to three levels. As an example of nesting loops consider the following

program:
@B Label 'B’ »
11000,+ Index 1000 counts in the positive direction after motion is complete
@C Label °C’
1100,- Index 100 counts in the negative direction after motion is complete
@D Label 'D’
150,- Index 50 counts in the negative direction after motion is complete
LDY9 Loop to label 'D’ 9 times
LCX19 Loop to label °C' 19 times
- LB4 Loop to label 'B’ 4 times. Note that loop counter id is only required on
nested loops.
E Exit unconditionally
Example: LB20<cr> Loop back to label 'B* 20 times

CAUTION: Program loops cannot be nested unless loop counter IDs are used.

S

PMCO001d -74- ORMEC

6.9

OPERATION

6.9.14 N - Normalize Command

Purpose:

Syntax:

<position>

<sync>

<direction>

<Ccr>

Examples:

define the current physical position or reset PMC

N [<position>] [<sync>] <direction> | N <cr> \’

-

integer (0 to 1,073,741,823) counts specifying the absolute position of system (default: 0)

synchronizing character waits for the system motion to stop

synchronizing character waits for the system to reach a constant speed or complete
motion

synchronizing character which causes the PMC to wait for the system motion to
complete steady state speed

+ set absolute position counter to plus <position>
to minus <position>

- set absolute position counter

= Wi VG Wawew Wearawas W wwasw

* PMC software reset

Initiate Serial Communications Interface autobaud sequence. See Section 5.1 for infor-
mation on the autobauding feature.

Note: The system must be at rest before <direction> can be entered.

N2000,+ Wait for system motion to stop; and then set the absolute position
counter to +2000

N* Software reset PMC

N<cr><cr><cr> Select serial 19,200 baud SCI

6.9.14a NC - Checksum on Non-volatile memory

Purpose:

Syntax:

calculate, display and verify checksums on non-volatile memory

NC <terminator>

<terminator> <cr> Perform a checksum verify. Generates an error flash and changes the

PMC001d

prompt if the verify fails, otherwise it returns a prompt

? Displays checksums stored in memory

! Calculates and displays checksums. Displays what the PMC thinks checksums
should be

* Recalculates and updates checksums. Any existing errors are cleared, LED

assumes normal yellow color and prompt is returned to normal

-75- ORMEC

H
&.

o

6.9

OPERATION

6.9.15 O - Output Command

Purpose:
Syntax:

<mask>

<hex>

<display>

Examples:

is inactive.

PMC001d

set general purpose machine outputs
O <mask> [/<hex>] <cr> | O <«display>

is a four bit hexadecimal number that specifies which machine output bits are to be
manipulated or changed. Mask bits that are set to a one specify bits that are to be
manipulated or changed. Mask bits that are set to zero specify the machine outputs that
are to be unchanged.

is a four bit hexadecimal number that specifies the value that should be placed on the
machine output. (The default if no <hex> parameter is specified is Fy which will cause
all bits selected by the mask to be turned on.) A bit set to a one defines an active
(low) signal level. A bit set to zero defines an inactive (high) signal level.

? display the last entered state of the general purpose machine outputs. A two digit
hexadecimal value will be returned by the PMC; The first digit will be 0, and the
second digit will indicate the current state of the machine outputs.

! same as ?)

Note: With binary communications enabled, if the top bit of the "O" command is set, only
two additional bytes will be required by the PMC. The first byte will be a number
representing the mask and the second byte will be a number representing the output
level for each bit.

OC<cr> Specify output pattern Cg; This pattern specifies that outputs OUTS’
_and OUT4’ are active (low).
OC/0<cr> Specify that outputs OUT8’ and OUT4’ are inactive (high)
03/2 Specify that OUT2’ is active and OUTYI’
0? Display the current state of the machine outputs
o! Display the current state of the machine outputs
-76- ORMEC

6.9) OPERATION

6.9.16 P - Program Command

Purpose: enter, edit or examine motion programs
Syntax: P <program> #<text># | P <label> #<text>#
<program> { initiate programming at beginning of Program Buffer; The program buffer is the

area in either or non-volatile RAM which contains MPL commands.

<cr> initiate programming at the end of the Program Buffer

? display the Program Buffer from the beginning, a line at a time; A linefeed
character will display the next line in the buffer. A backspace or delete will
display the previous line. The ASCII ESC(1By) character will terminate the
output. No changes to the Program Buffer are allowed in this mode.

! display the entire Program Buffer without any-further input required. An ESC
will terminate this mode.

<text> all printing ASCII characters other than a space are entered directly into the Program
Buffer; If an illegal character is received, it will be ignored and the PMC will send a
BELL.

<label> see @ label command description; Initiate programming at the beginning of the program

with this label.

Examples: P? display the first command of the Program Buffer and display each additional
command by entering a linefeed character until the ESC key is entered or
the last command is displayed

P<cr> add program text at the end of the Program Buffer until the Program Buffer
is full or the programming mode is terminated by typing an ESC key.

Note: See Section 6.4 for a description of editing functions to be used during Program
Mode.

6.9.16a P - Binary Programming Command

The binary programming command is designed for compact programming of a PMC from a host
computer interface. It is used by first enabling binary communications using the Z status register,
bits 6 and 7 (see section 6.17).

Syntax: P <label>

<label> is required, and when it is found the PMC will output an @ character. The "("
character may be sent, in which case the programming will begin at the begin-
ning of the program buffer. Once this mode is entered only the following
characters are allowed:

<if> move to the first character of the next line. No output.

<tab> echo current character and move to the next character.

<esc> terminate programming mode

any other character overwrites the program buffer

PMCo0014d -77- ORMEC

o

SR

¢

6.9

OPERATION

6.9.17 S - Set or Show Command

Command

SB
SC
SL
SM

Sp
SS

ST
Sw
SX
SY
SZ

The group of Set or Show commands are widely useful for configuring a motion control system or
displaying system status. The S command enables the user to select from the following options and

also provides an ability to display system status information:

Description

Set baud rate for the Serial Communications Interface

Show the system conditions (machine inputs)

Set the software limits

Select the "mode” of system operation: idle mode, velocity mode, position mode with
position summing junction (PSJ) reset, position mode without position summing junction
(PSJ) reset, and master axis controller mode.

Show the last program label passed

Show the system status: in motion, at top velocity, direction of last (or current) motion
and state of drive enable line

Set the program buffer trace option

Set the program buffer write protect option

Set or examine the X status register

Set or examine the Y status register

Set or examine the Z status register

6.9.17a SB - Set Baud Rate

Purpose:

Syntax:

<baud>

<Cr>

<display>

Set the baud rate for the Serial Communications Interface from an MPL program. The
baud rate set with the SB command witl "take effect” at the next cycle of power or a
hard reset.

SB <baud> <cr> | SB «display>

Value 0 to 8 specifying the baud rate.
0 Specifiess PMC autobaud sequence. For the autobaud sequence, the number of
carriage returns entered from the SCI determines the selected baud rate. On
powerup, entering two carriage returns will select 19,200 baud. Three carriage
returns will select 9600 baud, and so on according to the table below. Refer to
Section 5.1 for a description of the autobaud capability.

38,400

19,200

9600

4800

2400

1200

600

300

00 ~J ONA B W) -

set baud rate as specified by <baud>

? displays the last entered baud specification (to take effect at the next cycle of
power or hard reset)
! displays the current <baud> value

Note: This command requires that bit § of the Z Stacus Register be set before it can be executed.

PMCO001d

-78- ORMEC

6.9 OPERATION

6.9.17b SC - Show System Condition Inputs

Purpose: display the current system inputs
Syntax: SC <«display> .
<display> ! Display the state of the machine inputs. A two digit hexadecimal number will be

returned by the PMC
? same as!

Example: SC! display the current value of the system inputs

6.9.17c SL - Set Overtravel Limit Options

Purpose: set absolute position software limits or polarity of hardware limits
Syntax: SL <name> <position> [<sign>] <cr> | SL <display>
<name> specifies which limit is to be set

F Set the forward travel limit. Forward is defined as the direction of motion resulting
from a + direction command when the direction invert bit is 0. This forward is the
same direction of travel which the + hardware limit stops.

R Set the reverse travel limit

H Set the polarity of the hardware overtravel limits. An SLHO command specifies that
the hardware overtravel limit inputs are asserted for TTL low level input signals.
SLHI1 specifies that the hardware overtravel limit inputs are asserted for TTL high
level input signals. :

Note: To use hardware overtravel limits, the X Register Bit 1 must be set with the
SX command.

<position> an integer (0 to 1,073,741,823) specifying the absolute position of the limit. Default
value is 0.

<sign> + set software limit at plus <position>
- set software limit at minus <position>

«display> ? display current limit values with parameter names
! display current limit values without names

Note: Bit | of the Z register must be set to enable this feature

Examples: SLF100000<cr> Set the forward limit to position +100000
SLR50000-<cr> Set the reverse limit to position -50000
SLR<cr> Set the reverse limit to position 0
SL! Display the current software limits

PMC001d -79- ORMEC

6.9

OPERATION

6.9.17d SM - Set System Mode

Purpose:
‘ Syntax:
<mode>
<cr>
<display>
PMC001d

select mode for PMC operation

SM <mode> <cr> | SM «display>

enter IDLE mode; In the IDLE Mode, both the position and velocity loops are
disabled and the Servodrive Enable signal (SDRVEN shown in Appendix 8.4) is
disabled. This signal, or its complement SDRVEN’, can be used to disable the
servodrive either through an output disable input signal, provided on some servo-
drives, or using a solid state relay as shown in Appendix 8.1 and 8.2.

enter VELOCITY mode; In the VELOCITY Mode, the velocity loop is enabled, as is
the SDRVEN signal (for enabling the servodrive). Any encoder signals received will
be added or subtracted to the absolute position.

enter POSITION mode with PSJ Reset;: In the POSITION Mode, both loops are
enabled, and the SDRVEN signal is asserted. When POSITION Mode is entered with
a SM2 command, any error count which may be present in the PSJ is cleared before '
enabling the servo loops. Note: The error count that is cleared is added to the
current absolute position.

enter POSITION Mode without PSJ Reset; In the POSITION Mode, both loops are
enabled, and the SDRVEN signal is asserted. When POSITION Mode is entered with
a SM3 command, any error count which may be present in the PSJ will have an
immediate effect on the system when the servo loops are enabled, causing the system
position to "jump” to the position where the error count will be cancelled.

enter MASTER AXIS mode; In the MASTER A XIS Mode, the velocity loop is‘enabled,
as is the SDRVEN signal (for enabling the servo-drive). Any encoder signals
received will be ignored. The absolute position will always be identical to the
commanded position. This mode is particulary useful when no motor is hooked up.

set Mode as specified by <mode>

!

display current system status information; The PMC will return two hexadecimal
digits, with the first digit indicative of system motion status and the second digit
the current system mode. See data below.

display the last selected mbde; The PMC will return two hexadecimal digits, with
the first digit always returning zero and the second digit indicative of the last
selected mode. See data below.

First Hex Digit Bit Assignments
Bit 7 reserved
Bit 6 PSJ OVERFLOW indicates whether or not the Position Summing Junction has

overflowed and set the Overflow latch. 1 => PS] OVERFLOW

Bit 5 MOTION indicates whether or not the system is in motion. => IN MOTION
Bit 4 DIRECTION of the last (or current, if motion is in progress) motion; | =>

FORWARD

-80- ORMEC

6.9 OPERATION

Second Digit Values
0 Idle Mode

1 Velocity Mode
2 Position Mode
4 Master Mode

Note: If a PSJ overflow takes place, the PMC automatically enters IDLE Mode (with the Servodrive
Enable signal (SDRVEN) disabled. Clearing this fault condition with an SM2 or SM3 command will
automatically clear the PSJ.

6.9.17¢ SP - Show Last Label Passed .

Purpose: display the last label passed

Syntax: SP <«display>

«display> ? displays the last label passed as one ascii character followed by a number indicating
the number of commands executed since the label was passed.

1 same as ?

Example: SP! display the last label passed

6.9.17f SS - Show System Status

Purpose: - display the motion profile register which provides information on the system status

Syntax: SS «display>

<display> ? displays the motion profile register as one hex digit
! same as ?

Bit 7 DRVON indicates whether or not the servodrive is enabled => DRIVE ON

Bit 6 Reserved

Bit 5 Reserved

Bit 4 Reserved

Bit 3 Reserved

Bit 2 Direction of the last (or current) motion if motion in progress. 1 => FORWARD

Bit 1 Top Velocity indicates whether or not the system is currently at top velocity. |
=> TOP VELOCITY

Bit 0 Motion indicates whether or not the system is in motion. 1 => IN MOTION

Example: SS! display the system snapshot register

PMC001d -81~ ORMEC

‘..

6.9

OPERATION

6.9.17g ST - Set Program Trace Option

Purpose:

- Syntax:

<hex>

<display>

Example:

to enable or disable the program buffer trace option

ST <hex> | ST <display>

?

ST1
ST!

disable program buffer trace option
enables program buffer trace option. Displays each MPL command at the SCI (if
active) as it is executed.

displays a two digit hexadecimal number indicating the current state of program
buffer trace option ‘
same as !

enable the program trace option
display the current state of the trace option

6.9.17h SW - Set Program Buffer Write Enable

Purpose:
Syntax:

<hex>

<display>

Example:

PMCo001d

to enable or disable the write protection on the program buffer contents

SW <hex> | SW <display> -

0

protects program buffer contents from editing. Access to program buffer contents is
allowed for viewing via any of the P commands but any attempt to change the
contents of the program buffer will result in a CO error.

enable editing of the program buffer

displays a two digit hexadecimal number indicating the current state of program
buffer write protect option
same as !

Swi enable program buffer editing

-82- ORMEC

6.9

OPERATION

6.9.17i SX - Set X Status Register

Purpose:
Syntax:

<hex>

<display>

Examples:

PMC001d

to select system parameters by specifying the condition of the X status register

SX <hex> <cr> | SX <«display> .‘.

hexadecimal representation of the selected byte:

Bit 7 SMOOTH ACCELERATION PROFILE provides extremely smooth acceleration for
all PMC motion commands. Note that only the linear acceleration profile is
supported while using this mode. (l=on)

The normal PMC acceleration ramp has a minimum step size equal to 1/64 of the
top velocity value, which in the case of long acceleration times and high top
velocities can cause undesirable acceleration profiles. The smooth acceleration
profile has a minimum step size which is independent of the top velocity. The
minimum step size is approximately 11 Hz when in the 48 kHz velocity range, 47
Hz in the 192 kHz velocity range and 94 Hz when in the 384 kHz velocity range.
The number of steps in acceleration is dependent on the top velocity value. The
time between steps is dependent on the top velocity and acceleration values.

Bit6 MOTION BUS SLAVE selects the Motion Reference Bus as the master reference
for creating motion instead of the internal crystal controlled clock; (1=on)

Bit 5 ALTERNATE REFERENCE ENABLE causes each odd motion reference pulse to be
sent directly to the Position Summing Junction and each even motion reference
pulse to be used as the internal distance reference; This output is useful with
the MOTION BUS SLAVE bit for establishing a nominal motor speed with respect
to other moving machinery. (l=on)

Bit 4 MOTION BUS MASTER causes system to become motion bus master by supplying ’
its motion reference pulses to the Motion Reference Bus. (1=0n)

Bits 3-2 VELOCITY RANGE SELECT selects velocity range as follows:

RANGE Bit 3 Bit 2
48k Hz 0 0
reserved 0 1
192k Hz 1 0
384k Hz 1 1

Bit 1 ENABLE LIMITS enables Machine I/0O inputs IN4’ and IN8’ to be used as - and +
. limit switch inputs respectively. The AL acceleration value is used to stop
motion.
Bit 0 DIRECTION INVERT transposes the meaning of + and - in motion commands.

7 displays the status registers in the order XYZ; The data is displayed with labels;
eg. X=00 Y=00 Z=00

! displays the status registers in the order XYZ: The data is displayed with six
consecutive ASCII hex digits. e.g. 070000

SX88<cr> Select smooth acceleration mode in 192 kHz range
SX08<cr> Terminate smooth acceleration mode in 192 kHz range
SX18<cr> Become a "motion bus master” in the 192 kHz range
SX4C<cr> Become a "motion bus slave" in the 384 kHz range
SX02<cr> Enable limits in the 48 kHz range

.83- ORMEC

6.9

OPERATION

6.9.17j SY - Set Y Status Register

Purpose:

Syntax:

<hex>

Examples:

PMCo001d

to select system parameters by specifying the condition of the Y status register. See
Section 6.5 for how these parameters can be used to create unique motion profiles.

SY <hex> <cr> | SY «display>

hexadecimal representation of the selected byte:

Bit 7-6 ACCEL PROFILE SELECT specifies an acceleration profile by setting bits 6 & 7

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

as follows:
Bit7 Bité6 tvpe
0 0 - linear
0 1 - s-curve (polynomial)
1 0 - parabolic
1 1

- reserved

EXTERNAL START causes a motion to start upon receiving an external signal.
Bit 4 will indicate which signal will initiate motion.

EXTERNAL START SELECT specifies either the machine sensor input signal
(SENSIN) or the encoder reference (ENCR) to start a motion. (l=machine sensor,
O=encoder reference) Bit 4 will be ignored unless Bit 5 (EXTERNAL START) is
set.

EXTERNAL DECEL causes deceleration to occur on the machine sensor input
(SENSIN) instead of a calculated distance (after full speed is attained and the
distance traveled is greater than the currently specified index distance). Or-
dinarily, deceleration is initiated when the remaining distance is equal to the
acceleration distance. (l=on)

EXTERNAL STOP SELECT specifies either the machine sensor input signal
(SENSIN) or the encoder reference (ENCR) to stop motion during a home com-
mand or an INDEX EXTEND. (l=machine sensor, O=encoder reference)

INDEX EXTEND specifies that speed should remain at the level set by the J
command during deceleration rather than continuing to zero. INDEX EXTEND is
used in conjunction with EXTERNAL STOP SELECT or with a machine input
condition to stop the motion. (l=o0n)

SHARP JOG STOP selects 2 sharp (immediate) stop for jog deceleration rather
than the deceleration rate specified by the A command. (l=on)

For examples of some of the special motions which can be created by modifying the Y
Register, consult Section 6.5.

Note:

The Y Register is in the motion buffer and therefore, altering it during a motion

will only effect the next commanded motion.

-84- ORMEC

6.9

OPERATION

6.9.17k SZ - Set Z Status Register

Purpose:

Syntax:

<hex>

PMCO001d

to select system parameters by specifying the condition of the Z status register

SZ <hex> <cr> | SZ <display>

hexadecimal representation of the selected byte:

Bit 7-6

Bits 6 & 7 of the X Register are used to select one of the available COM-
MUNICATIONS MODES as follow:

Bit 7 Bit 6 Communications Mode
0 0 - Decimalln - Decimal Out
0 1 - Hexadecimal In - Hexadecimal Out
1 0 - BinaryIn - Binary Out
1 1 - Hexadecimal In - Binary Out

The syntax of MPL commands which may have their parameters changed in binary
input mode is listed below:

A

<null><byte><byte>

AL <null><byte><byte>

AS

<null><byte><byte>

AQ <null><byte><byte>

D

<null><byte><byte><cr>

DM <null><byte><byte><byte><byte><cr>
DR <null><byte><byte><byte><byte><cr>

<HRUZR-"IO

<null><byte><byte><byte><byte><cr>
<null><byte><byte><term>
<null><byte><byte><byte><byte><term>
<null><byte><byte><term>

<null><byte><byte><cr>

<null><byte><byte><byte><byte>
<null><byte><byte><byte>
<null><byte><byte><byte><byte><byte><byte><byte><byte>
<null><byte><byte><byte><byte><byte><byte>
<null><byte><byte>

In the descriptions above:

<null>
<cr>
<byte>

<term>

refers to the ASCII null character (00g).

refers to the ASCII carriage return (0Dy).

refers to one byte of binary data, and for the specification of numbers larger
than one byte, the numbers are normally represented in unsigned binary format
with the most significant byte first. An exception to this is the G command, in
which the number is expressed in two’s complement binary notation, with the
most significant byte first.

represents any of the motion terminators (+,-,*). In the SL command, the first
four bytes represent the value of the upper overtravel limit, and the second four
bytes represent the value of the lower overtravel limit. In the T command the
six bytes represent the six gain and compensation adjustments in the order
P,.V.F.X,CP, & CV.

-85~ ORMEC

6.9

Examples:

pPMCo01d

Bit 5

]
-
B

Bit 3

Bit 2

Bit 1

Bit 0

OPERATION

PARAMETER WRITE PROTECT must be set to execute MPL's = command which
labels an individual motion axis or to change the baud rate. If this bit is not
set (default), a new Axis-ID or baud rate cannot be assigned.

ADDRESS LINE SELECTION disables ADR1'-ADR&’ as address lines accessible

from the Machine 1/0O interface. When this bit is asserted (1=on), ADR1'-ADRS’
are used exclusively as machine inputs and only two program labels (@0 and @1)
can be addressed using SEL’.

IN MOTION. Enables OUTS’ to indicate that a motion is being commanded.
(1=0n)

FAULT. Enables QUT4’ to indicate an error has been generated by the PMC.
This fault output is cleared upon entry of the next MPL command. (l=on)

Enables SOFTWARE LIMITS. (1=on)

NO ECHO prevents echo of SCI characters. (l=on)

SZ0l<cr> Select NO ECHO mode for communications
SZ80<cr> Select binary in/binary out communications
SZ20<cr> Enable baud rate and axis id parameter editing
SZ02<cr> Enable the use of software limits

-86- ORMEC

6.9

OPERATION

6.9.18 T - Tuning Command

Purpose:

Syntax:

<register>

<value>

<sign>

<Cr>

<display>

Tune the Servo Loops or examine the current tuning parameters

T #<register> [<value>] <sign># | T [E] <display> [<time>]

P select position loop gain

V select velocity loop gain

F select feedforward gain

X select external output gain

CP select position loop compensation

CV select velocity loop compensation

indicates a value to use in the specified operation; This can be an absolute value to be
used for a gain or compensation, or an incremental amount to add to or subtract from
the currently specified value. The difference is specified by the <sign>. For gain values
the <value> is entered as a decimal value (ASCII hex if hex communications is enabled).
The compensation values are always entered as hex arguments.

+ increment selected item by <value>

- decrement selected item by <value>

Note: For + and - , the <value> defaults to 1 if not specified.

set selected item to <value> and terminate command

7 display current values with labels
! display current values without labels
% repeatedly display the current error.

Note: On labelled 6utpfxt (?) the gain values are output in decimal unless hex communi-
cations are enabled. The compensation values are always output in ASCII hex. On
unlabelled output (!) all values are always output in ASCII hex.

Compensation value assignments:

Examples:

PMCO001d

Velocity and Position Loop compensation values can be chosen from a range of Oy to Fy.
The value O disables the velocity loop integral + proportional compensator (selects 0 Hz.
frequency for the "zero break frequency”). Values from 1 to F select higher and higher
break frequencies.

TP17<cr> Set position gain to 17.

TV34<cr> Set velocity gain to 34.

TP+V5- Increment position gain by 1 and decrement velocity gain by 5.

TCPO<cr> Set position loop for proportional gain only

TCVA<cr> Set velocity loop for integral + proportional gain.

TE! Display the current position error. _

TE? Display the normalization error (error cancelled when the last Normal-
ize command was executed.

TE% Repeatedly display the current position error.

-87- ORMEC

6.9

OPERATION

6.9.19 U - Until Command

Purpose:

avntax:
Yilladi,

Purpose:

<condition>

<op>

<position>

<direction>

Examples:

suspend MPL operation until a specified condition is true

Wait before executing the next command in the program until either:

-a specified machine input condition (up to 8 inputs high or low)
-a specified test of absolute position is true

in the format <mask> [/<hex>], defining the required state of the general purpose inputs
INI’..IN8' IN10°..IN80’ for the Until command to execute. IF the specified input condition
is true, THEN execution will continue with the following MPL command, ELSE execution
will halt on this statement until input condition is true.

+

the operator specifying greater than or less than <position> as the condition to be
tested against

greater than the specified absolute position. If <op> is > then the wait (Until)
command will be terminated when the current absolute position is greater than
<position>. "Greater than" is defined as "more positive than the current position", or
further in the plus (+) direction of travel.

less than the specified absolute position. If <op> is < then the wait (Until) command
will be terminated when the current absolute position is less than <position>. "Less
than" is defined as "more negative than thé current position”, or further in the
minus (-) direction of travel.

integer (0 to 1,073,741,823) counts specifying the absolute position of the system to
test against. Default is 0 if not specified.

to specify <position> as a positive integer (default if not specified)
to specify <position> as a negative integer

Ul<cr> Wait until input IN1’ is active (low) before executing the next command
U2/0<cr> Wait until input IN2' is inactive (high) before executing the next

command

U81l<cr> Wait until inputs IN80’ and IN1’ are active (low) before executing the

next command

U>2000+<cr> Wait until the PMC-based system moves to an absolute position greater

than 2000 counts in the positive direction before executing the next
command in the program.

Note: An ESCAPE character entered during the execution of this command will end this command
with a DO error (see Section 6.12), and STOP’ asserted at the MIO will end this command with a Dl

error.

PMCo01d

-88- ORMEC

6.9 OPERATION
6.9.20 V - Velocity Command
Purpose: set or examine maximum velocity rate

Syntax: V <speed> <cr> | V <display> [<time> <cr>] 3 .
V [<relative> <speed>] <cr>

<speed> integer (1 to 1920) in 100 Hz units specifying the maximum position encoder frequency to
be commanded (default: 40.0 kHz); See Section 6.3 for other ranges.

«display> ! display current system speed
7 display last entered velocity
% repeatedly display the current system speed.
<relative>s P increase the magnitude of the speed by the specified <speed> for the next index.
M decrease the magnitude of the speed by the specified <speed> for the next index.
<time> the repeat rate of the % output.
Examples: V304<cr> set velocity to 30.4 kHz for next motion
v? display last entered acceleration rate
\'A display current speed
VP100<cr> increase the magnitude of the velocity by 10 kHz for the next index

V%1000<cr> display the current system speed and update the display every 1000 msec

6.9.21 = - Assign Motion Axis-ID

Purpose: label motion axis

Syntax: = <id> <cr> | = <display>

<id> Motion axis identifier; most displayable characters. Alphabetic characters must be upper
case.

Caution: Using the "equals = " character as a motion Axis-ID will turn off bus communi-
cation support.

<display> ! display ID of the axis currently in use
7 - display ID value currently stored in program memory

Note: Before a new Axis-ID can be assigned, use the Set/Show command to set Z
register, bit 5. This safety feature makes it unlikely that a new axis identifier will
accidentally be assigned. See Section 6.7 for a discussion of multi-axis serial bus
communications.

PMCo01d -89- ORMEC

6.10 OPERATION
6.10 SYSTEM STATUS POLLING

System status polling is provided to allow access to important information during program execution.
6. This information is acquired by sending a two character sequence to the PMC with which communi-
: cations are established. These two character sequences perform the equivalent function that the
indicated standard MPL command would if issued at the command level. The advantage of the system
status polling commands is that the PMC does not have to be at command level for these commands
to be used. Note: The <sys poll> command must be lower case.

o
e

Syntax: <attn> <sys poll>

<attn> . Ctrl] (ASCII 1Dp)

(Equivalent MPL command)

<sys poll> ¢ system inputs (SCYH
e current following error (TE})
g current system position (GY)
h hex communications checksum
i distance remaining in motion aI)
p last label passed (SPY)
s motion parameters (SSYH)
v current system velocity Q%))
x current axis id (=1

)

PMC001d -90- ORMEC

6.11 OPERATION

6.11 CREATING COMPLEX MOTION PROFILES

Overview

The contour motion command provides the user with the ability to exactly control the motion of the
motor including acceleration rates, velocities and decelerations. The contour motion command should
be thought of as running on "ticks". The user specifies both the size of the "tick” and how far, in
feedback counts, the motor should move during each "tick”. The "ticks" define segments of motion.

External Mode Contour Motion

Operational Description: This scheme uses 2 host computer to control a motion reference source and
to command each slave PMC, telling it how far to move during each "tick”. The host must provide
new data each "tick", until a terminate motion command is given. "Tick" information can be provided
via the program buffer. ;

A "tick" is defined as specific number of external reference counts. The number of input counts/-
"tick" is selectable by the user. This defines the tick as a distance and not a time. Since the
maximum rate on the motion reference bus is 192 kHz a "tick" in this mode can be no less than
1.33333 msec.

Internal Mode Contour Motion
Operational Description: This scheme uses a host computer (or the PMCs program buffer) to command
each PMC, telling it how far to move during each "tick”. The host must provide new data each

"tick”, until a terminate motion command is given.

A "tick” is defined in time and selectable by the user. The distance that can be traveiled in a
segment is velocity range dependent as specified in the X status register.

Contour Motion Command

Syntax: C <tick> <count> <cr>

where: <tick> specifies the time or distance for this "tick". The units of this value are
dependent on the X status register. The slave bit and velocity range determine

the units. The 384kHz range is not supported and will cause an error to be
generated when a C command is given and the 384 kHz range is selected.

time/tick time/tick distance/tick

<tick> (192 kHz) (48 kHz) (external mode)

1 1.3333 msec 5.333 msec 255 counts

2 2.6667 10.667 512

3 5.3333 21.333 1024

4 10.6667 42.666 2048

5 21.3333 85.333 4096

6 42.6667 170.667 8192

7 85.3333 341.333 16384

0 specifies this is the end of the contour motion

The 0 must be entered as | hexadecimal character with no terminator or | binary
byte with no terminator.

PMCo001d -91- ORMEC

¢

@

L

6.11

OPERATION

<count> number of counts to move in the next "tick". This is a signed 2’s comple-
ment number with the sign indicating the direction. The maximum and
minimum values are dependent on <tick>. Also dependent on <tick> is the
number of hex digits needed to specify <count>. Both are shown in the
following table:

<+ tick> <-tick> Max, value # hex digits
1 9 +255 2
2 A +512 3
3 B +1024 3
4 C +2048 3
5 D +4096 4
6 E +8192 4
7 F +16384 4
0 0
G H (1.33ms at top speed) O

If <count> > (max. value) or <count> < (min. value) is entered an A4 error message will
result and motion will decelerate at the AQ.deceleration rate. <count> must be entered
as either 2, 3 or 4 hexadecimal characters with no terminators as shown or 2 binary
bytes with no terminators. When <tick>=0 is entered no <count> can be entered.

If a <cr> is received before the proper number of hex digits are received the <cr> will
be interpreted as a terminator for both the <count> value and also the C command line.
An ESC character received during the <count> will be interpreted as an abort of this
data entry and will output an A2 error and return to the MPL prompt level.

Binary data mode is requested by setting the binary enable bit of the Z register . Once
a data mode is selected for an invocation of the C command it must be used until a <cr>
is entered. (Translation: you can’t mix hex and binary on the same line.)

Contour Motion Emergency Deceleration Rate

Syntax:

use:

<value>

Comments:

AQ<value><cr> | AQ<display>

This value sets the deceleration rate to be used by the contour motion command when an
error occurs as documented for the C command. This value is also used for STOP’ input,
Limit input and SPACE stopping.

deceleration rate in units of kHz/sec in internal mode and in hundreds of counts of the
motion reference bus in external mode. The range of value is 0 to 63335.

Multiple segments

PMC001d

The command syntax is structured to allow for multiple segments to be specified on each
C command so as to reduce overhead and perform the fastest possible motion. The
syntax also allows for exiting back to MPL so that all the power of MPL can be used
when desired.

-92- ORMEC

6.11

OPERATION

Host Synchronization

PMCO001d

No segment buffering is supported. While a segment is being executed it is possible to
enter the command, or data, for the next segment. To synchronize the host a prompt (})
will be output when the C command is ready to accept additional data. The C command
will be ready to accept new data when the segment just commanded (or last commanded)
is executing. While still on the same command line a prompt will be sent to the host
between each data set. While waiting for the segment data to be used (ie. before the
prompt is sent out) the PMC will ignore all characters sent to it except the ESC which
causes an error and exits to command level and a <cr> which exits to the command level
without an error. When leaving a C command and then entering it again, a prompt will
be output as soon as the PMC is ready for another segment data. This will be either
immediately upon entry to the command or there will be a delay until the next segment
ends. :

Consider the following example profile. Each step represents a new speed. Assume the Y
axis is the speed (counts) and the X axis is the time, then each segment is defined with
an ordered pair T, Y.

A B

Starting motion is done with a CT,Y, command. When the C is entered the PMC is
ready for another segment so a prompt is sent out. Communications would look like
(underlined characters are PMC output):

CiT1Y1}

The trailing } indicates that the PMC is ready for another segment. We would then send
the next pair T2Y2. Once sent we would not get back a prompt until after the motion
reaches point A, just after we go to speed Y2. Then we get the prompt back. When
entered on the same command line it would look like:

CIT1YI1}T2Y2}T3Y3

No prompt will be output from the T3Y3 until point B is reached. The user can at this
time enter a <cr> to return to the MPL command level. As long as he is in the
command level the synchronizing prompt will not be output. Eventually the user will
enter another C command. When this happens he will receive a prompt when the PMC is
ready for additional data, which is after point B is reached. If the new C command is
entered after point B, then the prompt will be output immediately. Otherwise, there will
be a delay. If each segment is entered on a separate command line then the sequence
might look like:
=)}C]T1Yl}<cr> command for Ist segment.
=)C}T2Y2<cr> command for segment between points A and B. The prompt to be
output after Y2 won’t be output until after point A is reached. If
the <cr> is entered before point A is reached the synchronizing
prompt for the T2Y2 segment will not be output. The user should
thus take care to not enter the data such that the Y2 data and <cr>
fall on different sides of point A. (You are cutting it too close if
this is 2 problem.)
=)C}T3Y3<cr> the Ist prompt after the C is output when the position is after
point B, which may not be immediately when the C command is
entered.

-93- ORMEC

>

6.11

OPERATION

External Sensor

Support is provided for sensor start of the motion. The Y register is used to control
sensor starts. Whenever the Y register has sensor start selected and a segment is
entered from the MPL command level (C entered) then that segment will not begin until
the sensor occurs.

If a sensor start is used on a segment within a profile (already in motion when sensor
start requested) and the sensor does not occur exactly at the end of the current "tick"
then the PMC will not change the hardware until the sensor occurs resulting in motion
continuing at approximately the last entered speed.

Examples: (PMC output is underlined)
=}SY30 set sensor start on

=}CIT1Y1}T2Y2<cr>start motion, sensor start. Command second segment, won't
wait for sensor on second segment.

=)SY0 turn off sensor start
=1C}T3Y3<cr> segment starts when previous segment ends

Contour Errors

PMC001d

Whenever a motion error occurs during a contour motion profile, deceleration will occur
according to the AQ parameters to the best ability of the PMC. Be forewarned that
because of the units assumed on the AQ command and the limited speed knowledge the
deceleration rate may vary some from the desired value.

Whenever an invalid character is received while a number (hex or binary) is expected the
C command will be terminated with an error message and deceleration will begin at the
AQ rate.

Except in the case of a sensor start segment if a segment ever ends without new data
being available, the PMC will begin a deceleration at the AQ rate. No # error message
will be output when this happens.

Whenever an error occurs, if the FAULT output is enabled by the Z register then it will
be turned on. This includes all the errors listed above, even those that do not output a
error message. This FAULT output could be used to stop a master in a slave environ-
ment or inform the host.

-04- ORMEC

6.12 OPERATION

6.12 ERROR CODES AND EXCEPTION HANDLING

The PMC is designed to trap user errors and return error messages in standard formats. When the
PMC is used in the host computer environment, it is the responsibility of the designer of the host
computer software to handle these messages. Once an error is detected; the current command and
mode are terminated {inciuding programming mode} and if a host system or terminal has initialized
the SCI, an error message is sent to it. The PMC then goes into a READY state, asserting the
READY’ line on the MIO, and sends a "prompt" to the SCL

Error messages from the PMC are preceded with a number sign (#), and followed by a two character
error code. A description of these error codes follows:

6.12.1 Syntax Error Codes

A0 Command not allowed in current velocity range.

Al An invalid command has been used.

A2 An invalid terminator or designator has been used.

A3 An invalid loop counter ID has been used. Only X, Y, and Z are valid. :

Ad The input value is out of the allowable range. See the "Ranges & Units" table for
allowable values.

AS Invalid address for the = (axis identifier) command has been entered. Valid addresses are
printable ASCII characters other than the "space" character.

Ab An invalid HEX value, either a condition code or an output value, has been entered.

A7 The requested velocity range is not available.

A8 No valid program in the optional socket.

A9 The requested machine code is not recognized.

6.12.2 Motion Error Codes . .

BO Command allowed only at rest or at top velocity.

Bl Index distance exceeded in external mode due to improper index accel-top speed specs

B2 Command not valid while the system is in motion. A motion designator or programming
command was entered when the system was in motion.

B3 Motion cannot be initiated with STOP’ low.

B4 Reserved.

BS An ESCAPE character was received during a synchronization command.

B6 A motion command was entered with DRVOFF (Drive Off) asserted.

B7 Attempt to move past a software limit.

B8 Attempt to move forward with forward limit (+LIMIT) asserted.

B9 Attempt to move in reverse with reverse limit (-LIMIT) asserted.

PMCO001d -95- ORMEC

6.12

OPERATION

6.12.3 Programming Error Codes

Co

Cl
C2
C3

C4
Cs
C6
Cc7
Cc8
C9

Program buffer write protected. An SW0 command must be issued to disable the program
buffer write protection.

Program buffer overflow.

Program label undefined.

The program memory has a storage fault. The last entered programming character was
not saved in program buffer due to hardware failure of the non-volatile RAM memory.
An ESCAPE character was received during execution of an MPL program. '
Reserved.

A Program command cannot be executed during program execution.

Reserved.

Attempt to modify non-volatile memory with active checksum error.

Function calls nested too deep.

6.12.4 Miscellaneous Error Codes

DO
Dl
D2
D3

D4
D5
D6
D7
D8
D9

PMC001d

An ESCAPE character was received during a Delay command.
STOP’ signal at the Machine I/O Interface was asserted.

Input operation aborted.

Parameter Write Protected. Bit 5 of the Z register must be set to disable the write
protect feature before a new Axis-ID or baud rate can be specified.
Reserved.

Reserved.

Reserved.

A SPACE character was received while in motion. Motion stopped.
C segment entered during a segment stop.

Position Summing Junction overflow.

-96- ORMEC

7.0 MAINTENANCE

MAINTENANCE

7.1 PREVENTIVE

No preventive maintenance procedures are required for the PMC family.

7.2 DEMAND

ORMEC equipment is designed modularly for simple onsite demand maintenance consisting of conven-
ient module replacement. Most of the integrated circuits used for Input/Output are socketed for easy
user replacement. If a problem occurs which is beyond the socketed I/O circuitry, the user should
return the defective module for factory repair. The PMC series is designed with connector interfaces
to make board replacement in the field simple and fast.

7.3 DIAGNOSTICS

Each time the PMC powers up or is reset using the RESET input signal, the CPU performs a set of
diagnostic routines. These routines include testing both the RAM and the EPROM memory, and as
these routines operate, they toggle the two color LED on the edge of the board between the Machine
1/0 and the Serial Communications Interface connectors. This LED has the following states:

Red while RESET’ is active

Green while the RAM test operates (about | sec)

Red while the EPROM test operates (about | sec)

toggling Red/Green during normal system operation; This toggling, which looks YELLOW, is

done at the 4 msec rate of the on-board real time clock, and since the

LED is driven directly by the CPU, its continued toggling is dependent

on the CPU’s normal processing of the real time clock’s interrupts.
Green 1 sec & Red 1/3 sec RAM failure

Red 1 sec & Green 1/3 sec EPROM failure

APPENDIX

ORMEC

8.1 TYPICAL PMC POSITIONING SYSTEM DIAGRAM

APPENDIX

8.0

-98-

A
2[3][8 ¥ @ D W d|8]| “7"Fazs
a Jiawal o On ¥ 1% O wevea | A P ”
WHQ\NM\!: SISSYH),
RIS TRINGIIRNG W4 WAL £a-gu,, — A A
I '
dHOD SWILBAS umimo@) @T&._?x" | LBH|—O
- — ®“ozu>xu_ (tvs) | 5|1—6
o HER I Y
v il G Qe | pvanim! MION @
NENIS e—0on ™ EDINBNTS | sixy | QNIHS |—D—
V|®“9u:w " WILSAS | 200 +|—@—fgyg= J0nS +
. i I 30 - [—O—tre J0A -
. : | | THm
YN & b} x ' ®“E | | JarAa+ |@|§A J0AZL+
MY e D,exn3 | ' awa|—o
BINI e i 18N @) “ 200 |—®
—t)
YNI SR N QYN pys3m ! '
VNI & — ®:vom 4o (ONd) .- '
;m “ T E A Ve Y P 1Y
2005 » gy A1 208G+ ¥3TTOHLNOD rLIYELT
(2) 1 NOWND) o——5 — \@_8228 I NOILOW v
NOWO) o % : Q! HvL AT
HIVL e— s — O, :u&i FIVNNVHOOS
|I 2V (D !N ON !
YAS+ T ihm %"o:_:m _ (125)
]
NIADS < o) NINYAS DYRINE P70 T e
© inanuas ! SNOIYJINANAO) “Mw IR T s
2 ! | (OIW) 152> “vﬁ_ m. < S1d
NOWNO) 5 @ oo | ot w8 [PErga s av
| ant GET J amwh. QWIT 1y o | Zrel | SIHM ot
Lart 1
O TSI A TN RIRIATR T 22T 2 TZZ TEZ T ISYIINON Nid b4rr- - 71’
ﬁv.wm.._egmbsomvmm,al Vo
a .M M IM =3 W 2 m o|g]| z =4 I I .W. ' “
m%mmMmmnmmm 3|313(3 P R 387> 1v
AREERRRRRRRERNEAREAREERDEEREREEE : _M—,a: " _wwdﬂd
(2| 4]3|8. 4.2 D N d|8

® @ ®

PMCO001d

APPENDIX

8.2

8.2 TYPICAL MOTOR LOOP INTERFACE DIAGRAM

2lz2[a[g. 0. 0. 0. ndi8
e T ™) e e *rL39
3IVIYIINI "..___:-"n."w. ..u::- .._2_....:_:: 335 Cewvenvis SIML A0S
[1] m ION 09 $3imvexd) J98)n *nol L] ¢
&8-— fbcboz Uzﬁ Jiu&h.._. a tﬂ. A6 WIND Oniav]Y ¥In] H“ .-4“3“-0 -u n"ndm_““u".""h_-"o“-"-h IRV L] ﬁ
dH0D S8NWALBAS umzﬂuo@
I (v]
INHOVH [T T)(T YHINE
_ [awmondo—+ - TR NSNS
-
* 35—
NOILYINNOY * o e g
b] e
wNosy ¥ g PN g o N
¥3000N3 P I X A8 o w3
Tism NOILISOd % L e ma o 93
031Sml IVININIENI d__EWU & P ; H A8 YIN3
O e, e a3 20n §
/ | NOWHO) * T Wi Nowno)
4 o NOWWO)
==) LI
S [Z] v . IHM
,/UIIOHL
)| ﬁﬁ e [
] HM e
i HOISISHY] !
, INDIVYE |A*_v”_. < N3OS
r MNYNAQ 4 - g
’ TYNOILJO LN
VIS OV0S
TYNOI1dO
Sl ?:Wu._wu% NoNo)
NIV IN38N)) ol
_ -
SISSYH)
/
o RALY
IVAGHI Twlfm._, n._. mootus_n_ m

ORMEC

-99-

PMCO001d

APPENDIX

8.3

8.3 SYSTEM ARCHITECTURE DIAGRAM

S 3[Z 0.0

1Ipa) am 00 V0 s 43D Ooes vwO)

D N _d[8] "7 &L

Vi it

3UN1IILHIYY WILSAS Ind £8-1-11,,.0

SHOD SWIALBAS UW—Z“D@ ¥

T

sapen

.MMJ

DvHEIINE SNOWYIINOWWOD WINIS

<+

>MST!

(5)

Y

CIDLE

(s€) o1 INMOWW ¥

(WOYdID)

JYON3N WYHO0dd
T0YINOD NOHLOW

(X

185aWXd

Y
12) W\SOAS @
318vsQ b, HILVY
(2) 18504 =— i . rsd
S04
NOI (sd) [moand
1353 HCLS¥rsd
(2) 843S0dv s18 A (rSd) [,
NOIDNNOE | NOILD3Y
ONIWAS Mu_
NOI1ISQd INSOd
DNIYINY
A 7 NOILSOd
HOLV) WwLID10
HONY3
NOILISOY
YOvBa333
V1101
(By3s0d)
(2) NI
IININIITY ALDOTIA
OdvAN0X1333 ATIVNY ¥30m1a
JYNLYHAD), M

sng

(WOYd3)

IYYMWY | 4
TYNOULO

aon

U

(NOYd3)
Y VMY

QYVONVIS

ndj

A

5 B £

AYLINDYD
. NOIVYINDD |dﬂr_
IDNIYIAIY T
L L
B B
w I
S

V ndd

9N

13534

1dMYY3LINI
" qyvos

0r1
IvLog

H
f

[A[£0.0 2 W8

ORMEC

-100-

PMCo001d

APPENDIX

8.4

8.4 SYSTEM ANALOG ARCHITECTURE DIAGRAM

nNONQGU_zn_ma.ﬂﬂu\Mm | \
= [ora] e Ty &\ g _ NYDILNS 1 1 | 1¢n
F 12 Nid WL HYV3N Q31vD0™ SINIOD 1S3Le | n2ENT | wKotivw | o2vn
TN1IILONY _O0TWNY Jnd | $3-1-48 | SR BE—— R
19vd
dHOD SIWILBASB Uws.ﬂn-@ 5“% — _ S.an:u::s YINDLIVAONYMN | 300)° 4Dy
552 01 @ =NIYO 3ymm = Z
VNGIE »y »
N
(CNIv9)
NIANQS o_sA“_.
) Nen
NINNGS: <} <WSOAAS (1)
(1NdN1 B)
9 ==
wwwﬁu.w T C <180 th
anos ' (450d)
||l..|- 7 ¥Y350d
L) ﬂ
. azvn
A ~ + nh
Aol 4\A$ N/_W MWNV—<IHY IS0dY t1
vy
8 M) et
2_3& i wew
dvuls > Al
1Nvi30 ‘
P Y <41 ()
1) $3473AX e Lovo
. . wOES 89 ol o
NIVOX * HOL- e ‘

ol
b Xl
7

clefolz. @0 D wdls

e

ORMEC

-101-

PMCo001d

APPENDIX

8.5

8.5 SERIAL COMMUNICATIONS INTERFACE DIAGRAM

Ggleld|L. @26 0O W d|8

2004] A

WOV Y ase s Dromewd

FIVIYILNI

SNOHVINNWWOD TVI¥3S JWd

dtH0D BIN3L8AS UW—)—EU@

NOT2VINOTINGD

0ITIVISNT A¥02IVS
INL ST 330 21250 ¢

310222 »Na) 20N
SNOILVYNOIINOD ONIddVHLIS
ve[| v | ve ve
[piotn Kol
o JeT 133 133 33 -
. (o i S ol Rl I
—M . o Ow,—”_ it ~”ﬁ
r - heteg}
o e e =l
h ! [l -
* e g X nle - We L
NULW_J .wﬁﬁu.u.u. kvI1S)| 6 — 16
» p i v wml e e m\ﬂ\. L
)) [e
' TR
NN 1 S =l . SY| ¢ 251 ¢
Tl (ke —M_.N _M_a ﬁu«_.um, 4
o o * o ol e (/ \d
- - - _— axi) 2
.. .. m_..:b.u._ L ¢
R I
.o - o |) @ "._”.w”.u... —le axy| €
-- Ny i | "
Bal f e el (e
! d
1{ey N Nle e Y 1
(oun/ P () P ERER I _M_ Ll el
P e o“_—n o { .
1
.. R Y riary)| I [Y N 3 R B YY)
o o o o 9gle * % . — e AS ¢+ ﬂN%
. P 3 m o o — it Y4 W
4 ¢ < ¢
o o} Y e o Iy « o I\ —62 ACH €
covsy oS o« aesy MOV Quw_m_ —I-
» 202 Y VN Nid WVN NId
6v-SY X°-SY

|
vig2td — Ml | 0yn
nNYLISINS 1 | s2n
NSLLISLNS 1 | s2n
d0SISANS | 14 “ L0
siavd _ _
BINNLIVINNYN SIUNLIVINNYN 300)° 438
T S
G RE
SNY N} (v
5E0Y %
orn
X
il au

1[“3

a[Z.0.0. 0 W d[8

ORMEC

-102-

PMC001d

APPENDIX

8.6

8.6 MOTOR LOOP AND SYSTEM AXIS INTERFACE DIAGRAM

m v .w N.Q Q U 2'»!“&‘ w . NS08V — TYNOLLYN _— in
0 Jitpag ade w0 YR IN I
ERTZEIT] { JINFYIIN
SIXY_WIISAS § dOOT HOLOW Jnd &nm._m.o_ - 8%«.%%@....3&;&%%8* v _ . _ 2003 420
dHOD SWILSAS ums_mu@ s |||.|.JT.
—Q— m.
' L
LIy
i
: Toey ey
< | S —ar
< IN{TT T
NS BN 1) H |8 oL
X ' by “ !
t by
e "<y T
!
(4) ¢4 % —I\’\n X “ 1»1u
223 . 1S —
? | ! b
G D
vii< 81016 ' ' ~
- Sdvdis ¢ v clvie HIERR 4 O}
- " nnvax I r m _ oiTd n22)
(2 oWAe i 1 S 3K 2 | loos 2Ny INY
"@.II!I_ Aottt) €W
W bztalll_uﬂ.T_ EEL '
7 X AG2
.N%uﬁSA
Nio -
<NINTS
L2 — ol | g
t$) { NS = t r 1
. 3 , ' m .ﬁm « 11 —v 433X
X EANASRERAN M.l H IBERE 1:_-_
.L. W 0L] ‘ m% ad dddladior L
3 g601} 32 E b6l REOLIASIPBLALP DL & INRIN
- SREST VSN ZZB0H M SomET gzl 9001
m mcmmmm SIXY [m m.“p‘wfu.w a D.n..MNN m Wm HOLown
% ..,._mswm WI1SAS g3% wmrmm+ \ VRS
Co.¢ W-] WW @VMNQQUEQ@

®

ORMEC

-103-

PMC001d

APPENDIX

GIGI3[Z @ @ DO W d|8

Rlsd Eld

NN VR R0 ID Pwmvel | MW

WY3OvId

3IOVIHILIN ITVIVH S NNd

0D BNILBAS UWEE@

I

¢n.u.— JINNGD

NEiyins

st

1) 3yIxI=

h JIXIo-

) doiS=

- . $5i94 ST _ Ln
3)7IH3IINI me NALSAS SOS1VINS i I 50
unmw NYIASINS 1 _ s2n
O 2335 uSLISINS 1 ezn
o A33e &Mm mm w o .o.wwm —222-104-9015) $HYN0Y “ TLT]
) .w_...,.m & w m_Zm_N BanH " 1eve I
.-um.u._.w_.o.mwﬂm Zo9rt R m_v_.:.«. 601 ¢L .m“ wiangIvinnve w3snidvinnve | 3902° 43
xR N Fu AR phan
¢4 J_ q 4 ¥
221G\ < Q13|
225 < 1353 |w
< dOIS
2
5 bd
igovd
v
<ov
dvulS ey
e 2
d
vezn.| Hova ~
o n/_w Qiva
7 ’ bn SNG NAIHL)
-0 |)62 ¢ H
o 4 284
i %4 mr I 9 ey
M vad
ikkle
it ol
Zlvpls
S =024
0LN0) nh' W
) SR T (B O O R o & & £3d
i) [
(NG W33 sE A7) O 6|viols v
m PN __ G+
HER :
ANIYLSH w. .
GIG|d|L. 0 O) N d|8

8.7 PARALLEL INTERFACE DIAGRAM

8.7

ORMEC

-104-

PMCo01d

APPENDIX

ORMEC

-
—

916 0.0 D W _dj8]-

w) JaavA] »tm N0n) TP 2 4u M Denrel

MIAYIND TYNIS NOIION Ind Jlnnlm.-: e

dtiOD SALBAS UW-)—N—D@ @

NOHVIOY 3AILISOd

BRI _ R
@ WO o o
\:/ g O s T Y s T ey VO I T Y ey Y

— e U5 v
[\ \l"l‘/

< - HvL

HOLON
0AY3S
andI

1 ! [} ! “
LU UL : . 2504 51
]
. LU UL, 25 o
u . “ ' 4
D 03348 1 2393ADN ' T VAR
NOTLVEDVIII3e INVISNOD NWOIAVEDIIIIV NOLLVNIIIIZG LNMVISNO) nOLAVEINIIIY TAvnois

nd

-105-

i[t[8[6.0.00 W d

8.8 MOTION SIGNAL OVERVIEW DIAGRAM

8.8

..... - ‘ ‘

PMCo001d

APPENDIX

ORMEC

-106-

a W d]8|7 7 74% ==
HUGIS. 0.0 W diF 7 TV 10N 0G
1N0AYT GYv08 Xd S00° ¢ Xxx° co-
- LS ﬁ $3Wd2 SV 2
006-Ihd mc 9o Ll 2_.3“..""32 2 _ omqowcwa v 434
y . . N
dHOD SNILBAS DWS.EO@Q@ SININT NI FUV SNOTSNINIE VWY "38- “owwx 2 I/
TN
oot
' P .l!‘lﬂ)
_ ‘ ey 1]
L35 S5 A ! AR O .
ER N — Rk
-]”mN.ll
—e53 £r A
' ¢ 76"\
! 1
_ |
_ —& Bk}
o peeme e ' 1 |oe
r T
! o §
! WP !
" 207 02U Mot X)
| of U TV " e -
i
_ ! 269
" 30I1S ININOJWOD ..vﬂmak_ b
— .
s § I T4y
“ a1
' NOILY 214V 10d Vol "
! HOLIINNOD ONIYW O3 9 :“ ' |
! Lot NOILVZWS ¥ 10d QIAON3Y 9 Nid R
YOLDINNOD ONILY 304 o) i S
' NOHNZISVI0d QIAOW3IY B NI - . I
" # ane | €52 | |
| - ine enl W
Uy | 111 oyl Lt —Gete—
!;T y —4 L} 4 1
AL 182 _--. R t-mﬂ oF “ﬂ o \ 4
52 -] {] M I | s l-uﬁLr
e v
™ J ' ' ST0H Nl :o:l\ S3T0H ¥ _Om_mi
ki ocy’ "vig _6or
o .. o ———— PR a9 - ———— et e
DA 168 - .

L[[2]s-@.0.0.w dfg

as [eronf ¢

8.9 PC BOARD LAYOUT

8.9

PMC001d

8.10

8.10 COMPONENT LAYOUT

APPENDIX

o (" s R p—— |
: f' e o
= il = o
tmr=11 B o ¢
éé g . e S"—"IE ‘L'E
] ° :".3-! I r——][E
-__%17 I .| w-d:S: .
¥ - gt &
33 :ég?)) -
I I =
g; %!’_-——l [?)
e
5 5 :
® ﬁ;k 3gL
_;::.:1
2‘3 :Q” a].
Y == 3\
w2 &B s
| 8" e
A&~
0
i] s D ¥ 1[E
I | _:«]‘[é
I = &= =}
E _2- - :15:, |[E
g = 2 So=T 3%]
c <" -
= Ba—— - 3T 1 (B
g 3 =3 e——
? =3 [I ®
; ’ —
i ’ E—
— & o
a —

Blr M C o ¢ 6lD]1]!

Enane O I UICA O

@OHMEC S8YSTEMS CORP

EMC COMIONERT L AYOUT

S0 | SAsed DONTIICA S sON

SYSTEM BUS
INTERFACE

B2 /.4 BIEM C G O €D 1]

PMCO0014d

-107-

ORMEC

APPENDIX

APPENDIX 8.11

(o6reIn)

H3IWNNOIIO HIIMS

ONI ~9AS
INL ~SnS
INL ~wAs
€Eng -tns
»31003X3 -2n8
+1d01S RS
SIHOLINSE
iaviy -Sa
olno -
1Lno ~-ta
2inge -2¢
€1no -1a
sa1

ia]c 0.0 5 . nal_—=f
= ST B AL
o@-Sin] €864,
n&ﬂlUnU_WQ)ﬁWhMW>hwnUmrznnﬂ-H“”“_ uﬁm
v
2

J”w [y R,
2

AGH+

b

610" 61 1IN

[D] .n..Jhu_
w

5

HOISISIY TYNOI L) B

NMOG
IWANVH HOLIMS O NMOHS

'y
(LR
14?@

\E'

O N
Sy

g i

b

G3IANNOYI YV
SNid Q3438NNN
N3IAT 1Y

|
-

r
[
T
|
|
]
i
T
1
e

nu0
T3A
1HM
oH0

513
ETL

S
N

(1a 2)
HOLIMS VIIHMBWNHL LMS

ORMEC

-108-

([1[8[G. 0 9. S | W

w Jornrd Y m R AT

8.11 MIS-200 SCHEMATIC

8.11

PMCoo01d

PMCo001d

INULA
INDEX

Acceleration Command L Lo o s s e e e e e e 63
Acceleration profile L L L L. oo e e 84
Alternate Reference Enable 83
AXISID e e e e e e e e 32, 59, 60, 86
Baudrate L Lo e e e e e e e s 21, 35,75
Binary Programming Command o0 e ... 77
BINCOM ENABLE o e e e e e e e e e e s s s e e e 60
Branch (GoTo) Command« « t v v v v e e e e e 64
BREAK . . . i e 47
Checksum Calculation i i i i e e e e e e e e e e e e e 75
Complex Motion Profiles« . . e e 91
Contour Command.« v v« o v o e e e e e e e 65
Delay Command L e e e e e e e e e e e e e 66
DIRECTION INVERT e e e e e e 83
Echoof SCIcharacters« c v v v v v v v vt v e e e 86
Editing Functions« . i 0 o e e e e e e e e e e e 52
Editing the program buffer 000w oo 38
Encoder Reference (ENCR)« . v« v v v v v v v v v 26, 36
Error Codes.« . i i i e e e e e e e e e e e e e e e 19, 95
ExitCommand e e e e e e e e e e e e e e e s e e 67
EXTERNALDECEL e e e e e e e e e e e 84
External output gain. e e e e e e e e 87
EXTERNAL START o o o o e o e e vt h e s e s e e e 84
EXTERNAL START SELECT« .« i it e e e et e e e e e e 84
EXTERNAL STOP SELECT o i v e v i v it e e e e e e e e 84
External Velocity Command Input (EXCMDIN) 26
External Velocity Reference o e, 26
Feedforward gain L . e e e e e e e e e 87
Function Command« .« t v i e e e e e e e e e e e e e e e 68
General Purpose Machine Inputso 0oL 58
GoCommand e 69
Header J6. & .« o i i e 32-34
Header J7. o o o e 26
Hex Bit Pattern Table « v o i e e e e e e e e e e e 53
Home Command v v i e e e e e e e e e e e 70
Home routifie« v v v i v e e e e e e e e e e e e e e e e 43
Host computer interfaceo o e 7, 77
HVTACH. o o o oo h e e e e e e 10, 22, 25, 39
I/JO OptIONS e e e e e e e e e e e 58
Idle mode. oo e e e e e e e e e e 10, 80
Incremental Position Encoder e e e 9
Index Command.o e e s e e 71
INDEX EXTEND o e e e e e e e e e e e e e s e 84
INPUtS o e e e e e e e e e e e e e e 79
Jog Command. Lo e e e e e e 72
JUMPERS . . . o . e e e e e e e e e e 32
Jumpers for RS-232 & RS-422 Communications 33, 34
Kill Command e e e e e 73
Limit Switches e 43, 83
Line CoOUnto e e e e e 9, M
Loop Command e e e e e e 73
LYVTACH o e e e 10, 22, 25, 39
Machine [/O Interfaceo 27
-109- ORMEC

9.0

PMC001d

LIND LA
Machine I/O Operation « « o o o e e e e e e e e 58
Machine Qutputs
OULIPULS .« v o v e 58
Master/Slave OPeration« « « « « oo e e e e e e e e e 61
Motion AxXis ID &« o i e 89
Motion BUffer . . . v & v v e 14
MOTION BUS MASTER« « v v v v vt e e e e e e e e e e e 83
MOTION BUS SLAVE i i i e e v e et e e e e e e e e e e e e e 83
MOTION Commands . . . o « « « « o o « o o o o o o s o o o o s o o oo 0 o ot 13
Motion Programming Languageo e e e i1, 46
Motion Reference BUS. « ¢ « o v v v o v v o e e e e e e e e e 24, 61, 83
Motor 100p Interface 0 . e e e e e e e e e e e e e e 25
MPL Break Features. v v v o v o o o o o v 0 o o o o o o e s e e e e 47
MPL SYDEAX . & & o o = o o o o e e e e e e e e e e e e e e e 48
Multi-Axis Communications « « ¢« ¢ & o . e e s e e e e s e e e e 59
Normalize Command « « v v« o v e e e e e e e e e e e e e e e 75
Output Command o v o o 4o e e e e e e e e e e e e e 76
Parity. e 21
Position l00p COMPeNsation J . . e e e e e e e e s e e e e 87
Position Loop Gain « & v e e e o e e e e e e e e e e e 41, 87
Position Loop Integral + Proportional Compensator - « 41
POSItION MO . . « & « v v o o« o o o o e e e e e e e e e e e e 10, 80
CPOWETUDP FOULIME . . .« ¢ . o o o v e e e s e e e e e 6, 35, 42
Program Buffer oo oo e e 17
Program Command e e e s s e e e 77
PROGRAM commands and terminators « « - « = « « « o« o0 - 17
Program Label Command o .o e e e e 62
Program TIaCe ¢ & v v o v e o o o o e e e e e e e e 82
Reset PMC O I 75
RS=232C & i v e 21
SAtULAtION . « + o o o o e o e 40, 42
SENSIN . & v v e 26
Serial Bus COMMURICAtIONS« . & « « o o s . 4 e e e e e e e e e e e e 59
Serial Communications Bus oL o e o e e e e e e e e 59
Serial Communications Interfaceo e e 5,9, 25, 35
Setor Show Command. « o« « v o e e e e e e e e e e e 78
Set-Up Parameter Ranges, Defaults & URItS . . . v v e e e e e e e e e e e e e e 51
SHARP JOG STOP o o i i i v e e e e e e e e e e e e e e e 84
Smooth Acceleration Profileo 83
Software Limits « « « « v« v o e e e e e e e e e e e e 19
Special Purpose Machine Inputs
INPULS .« o v v o e e e e e e e e e e e e e e e e e 58
Speed RAtIOING« o o o v o o e e e e e 61
SEAtUS TEGISTEIS . . « & « = « o o 0 o o e e e e e e e e e e 52
SIEAPPIOG « « + « « « o o o o e e e e e e e e e e e e 21, 25, 26, 32-34
Summing and Compensation Circuitry« . . oo e e 10
Synchronization Characters - - -« .« oo 16, 47
System axis interfaceo o e e e 24
System Baud Rate Command o ¢ oo 78
SYSEEM SHATUS . . . o o o o o o e e e e e e e s s 14
System Status Pollingo 50
TaCRhOMEIET . . o o o o e e e e e e e e e e e e e e e 22
TErminatorS . . - « o o o o e e e e e e e e e e e e e e e 13, 15
Thumbwheel Switch Configuration OO 31
Tuning Command« .« - <« - . SO 87
Tuning the PMC - .. e 39
-110- ORMEC

9.0

pMCo01d

Until Command e e e e e e e e e e e e e e 88
Velocity Command e e e e e e e e e e e e e e e e e e 89
Velocity Feedforward Gain o000 oo 41
Velocity Loop compensation00 87
Velocity Loop Gain o e 39, 87
Velocity Loop Integral + Proportional Compensator 40
Velocity modeo e e e e e e e e e e e 10, 80
Write Protect . . . v v v v v e 82

-111- ORMEC

S v V2 (R S L Rty

BRI T T e

19 Linden Park ® Rochester. NY 14425 @ 716-385-3520

May 3, 1988

ADDITIONS & CORRECTIONS TO PMC MANUAL PMC001d

Below is a list of additions and/or corrections to the PMC manual since our

last printing. We are in the process of printing a new manual to reflect the
changes in MPL with Version 3.1, as compared to Version 3.0. If you have

any technical questions, please call the ORMEC Service Department at (716)
385-3520.

‘ PMC Checksum Errors

PMC Powerup Diagnostics include a "Checksum" calculation and comparison
test of the contents of the non-volatile RAM. This is a method of checking
the validity of the program which you entered in the Program Buffer. It
examines the program currently in memory to insure that a RAM failure
resulting in a changed program has not occurred.

When a Checksum failure is detected, the diagnostic LED will flash with a
cycle of red for one second and green for one second, and MPL program
execution will be aborted. The "MPL Prompt" will also be changed to "-}".
Program operation cannot continue until the Checksum is cleared using the
NK* command. The LED should then return to the standard yellow color.
The user should then either check or download the program buffer to insure
that its contents are proper. To insure that the non-volatile RAM is
operating properly, powering the PMC down and back up after this update
is advised. If the non-volatile RAM is used to store either an Axis ID, or a
Baud Rate, then these two items should also be verified with the SB! or =!
as appropriate.

The most common cause of this problem is powering down the PMC
while in the process of writing an MPL program. The reason for this
.N;,:.u is that the "Checksum" is updated at the end of each Program command. If

the program is changed -without ending. the Program -command properly,
then the checksum will not agree with the current contents of the Program
Buffer and a false "error" will be detected the next time the PMC is

PMC Manual Additions/Corrections -1- ORMEC

powered up. The proper technique for terminating the Program
Command is to use the escape key <Esc>, which will cause the PMC
to return to the "prompt" level.

"1x" Multiplication Circuitry

For PMC Model Nos. PMC-903/01 and PMC-904/01 only, the quadrature
decoder circuit which interprets the phase quadrature input channels to
determine the load direction and distance travelled has been modified. The
PMC-903/01 uses "1x" multiplication circuitry, which means that the
effective resolution of a system using the PMC-903/01 is "1 times" the
“linecount” of the incremental position encoder.

"2x"' Multiplication Circuitry

The PMC Model Nos. PMC-903/02 and PMC-904/02 have similar
quadrature decoder circuitry but implements a "2x" multiplication scheme,
so that the effective resolution of a system utilizing the PMC-903/02 is "2
times" the "linecount” of the incremental position encoder.

Special Model for High Resolution Position Feedback Devices

The PMC Model Nos. PMC-903/03 and PMC-904/03 have a reduced
position loop gain for use with high resolution position feedback devices and
in selected other applications where there is too much position gain.

Upgrade of MPL-3.0 to MPL-3.1

MPL has been upgraded to version 3.1 to add some new features as well as
compatibility with MPL-MATH and the extended command set of the PMC-
904.

Summary of Changes in MPL-3.1

New Command to Set Deceleration
Additions to System Status Polling
NC Command Changed to NK
Normalize Position Allowed While System in Motion
Set Mode While System in Motion
Syntax Change for Delay (Reference Distance) Command
and } Characters No Longer Valid for MPL Programming
256 kHz Velocity Range Now Supported
Motion Synchronizing Characters
Delay on Commanded Motion
Additions and/or Changes to Error Codes

........

@ clio ol N NorNerNer i) v fv; I - L]

....................

New Command to Set Deceleration

PMC Manual Additions/Corrections -2- ORMEC

This new command allows you to set up and trigger a deceleration from top
velocity. The primary use of this command is in registration systems with
"blanking" capability. Suppose for example that a system is supposed to
index labels rapidly and decelerate when a registration mark is detected.
But it must not look for the mark until after it has reached a certain
position, because there is other information on the label which is in the
registration mark detector’s field of view. The Until command can be used
to delay until a position is reached, and the SD command can then be used
to setup the PMC to decelerate on the sensor.

The syntax of the SD is:

SD <trigger> [<sync>] <er>
Select a trigger to be used to begin the deceleration from top
velocity. The trigger may be one of the following values:
D - Distance (Go and Index motions only) -
E - Encoder Reference
I - Immediate trigger
O - Turn OFF trigger
S - Sensor Input

The synchronization character can be used to coordinate this
command with completion of a motion, motion reaching a
constant speed or reaching the end of a constant speed.

SDC <er> Calculate the deceleration rate to be used for the next
system deceleration triggered by the SD command. If this
command is not used, the deceleration rate will be equal to
the last acceleration rate. Note: when the SDC command is
issued, the current value of the A’ command will be used as
the deceleration rate.

Examples:

SDS;<cr> Wait for top velocity, then set the deceleration trigger to be
the sensor input

SDI;<cr> Wait for system to index to top velocity, then decelerate
immediately

SDC Calculate the deceleration rate for the SD trigger.

SDD; Set up a new deceleration rate and trigger is based on the
deceleration point in the current Go or Index motion.

SD? Display the deceleration trigger set by the SD command.

This value is reset to 'O’ when the system comes to rest.
SD! Same as 7
SD% Repeatedly display the deceleration trigger.

PMC Manual Additions [Corrections -3- ORMEC

Notes:

(1) If an index or go motion has its deceleration trigger and/or rate
improperly changed by the SD command, the motion may not end as
expected. (2) The SD trigger command can only be used at top velocity.
(3) The SDC command can be issued at any time and will use the value
set by the A command to calculate the deceleration rate.

Additions to System Status Polling

Two more parameters which can be viewed using the System Status Polling
function. It is now possible to poll for the last error code (lower case 1) and
the current status of both general purpose machine outputs and the ready
line ("o").

System status polling is provided to allow host computer access to
important information during program execution. This information is
acquired by sending a two character sequence to the PMC with which
communications are established. These two character sequences perform the
equivalent function that the indicated standard MPL command would if
issued at the command level. The advantage of the system status polling
commands is that the PMC does not have to be at command level for these
commands to be used, i.e. system status polling can take place even while a
PMC is running an MPL program.

Syntax: <attn> <sys poll>

<attn> Ctrl 1 (ASCIH 1Dy)
(Equivalent MPL command)

<sys poll> ¢ system inputs (SCY
e current following error (TED
g current system position (GY)
h hex communications checksum none
i distance remaining in motion I
1 last error code none
o state of outputs & ready line none
p last label passed (SPY)
r X, Y, Z status registers (ShH
s motion parameters (SShH
v current system velocity (VhH
X current axis id (=1

Note: The <sys poll> command must be lower case.

PMC Manual Additions/Corrections -4- ORMEC

NC Command Changed to NK

In order to enhance the non-volatile memory checksum function to work in
hex communications mode, the syntax has changed from NC to NK.

The NK<cr> command calculates, displays and verifies checksums on the
PMC’s non-volatile memory. If the verify fails, the PMC generates an error
flash code with its diagnostic LED, and returns an error prompt of "-}",
The NK command is automatically executed at powerup.

NK? Displays checksums stored in memory.

NK! Calculates and displays checksums. Displays what PMC thinks
checksums should be.

NK<cr> Perform automatic non-volatile memory verify.

NK* Recalculates and updates checksums. Errors are cleared; LED
and prompt return to normal. ’

Note: If you have been using the NC command in decimal I/O mode, the
command continues to work properly with Version 3.1

Normalize Position Allowed While System in Motion

The N<position><sign> command, which normalizes the absolute position
counter in the PMC, is now permitted while the system is in motion. From
the instant MPL processes the <sign> to cause N command execution, a
variable time up to one millisecond may pass before the position information
is actually updated.

Set Mode While System in Motion

The SM command, used to select the PMC’s servo control mode, can now be
used while the system is in motion.

Note: (1) No attempt is made to maintain proper position
information when a mode change is made while the system is in
motion. (2) Motion is not aborted when the mode is changed,
except when switching to mode 0, which turns the servodrive off
and disables the servo loops.

Syntax Change for Delay (Reference Distance) Command

The syntax of the Delay (Reference Distance) DR command has been
changed to DX to allow for future compatibility with ORMEC software
products. The function of the command has not changed. Below is the new
syntax:

DX <distance> [<sync>] <er>

PMC Manual Additions/Corrections -5- ORMEC

Delay a specified number of reference clock counts before executing the next

command. Note: The system must be at steady state speed to use this
command.

Example:

DX5000<cr> Delay for 5000 counts of the reference clock. If in
internal 192kHz mode, this command would delay 5000
counts of the 192kHz clock. If in external mode, this
command would delay 5000 counts of the motion
reference bus.

and } Characters No Longer Valid for MPL Programming

The pound sign "#" and right curved bracket "}" are no longer valid
characters in the PMC’s program buffer except during Binary Programming
Mode. If you attempt to enter these characters, your terminal will sound a
"beep" indicating that you attempted to enter an invalid character in the

program buffer.

256 kHz Velocity Range Now Supported

MPL Version 3.1 now supports a 256 kHz velocity range by setting Bits 3
and 2 in the X Status Register to 0 and 1 respectively. This new velocity
range is particularly useful for master/slave systems, where the master PMC
is no longer limited to top velocity of 192 kHz. The acceleration ranges and
units are identical to the 192 and 384 kHz modes. The 256 kHz velocity
range has the following ranges and units:

Command Range Units
A 1-65,535 kHz/sec
AL 1-65,535 kHz/sec
AQ 1-65,535 kHz/sec
AS 1-65,535 kHz/sec
J 1-2,560 100 Hz
\% 1-2,560 100 Hz
H 1-2,560 100 Hz

The following table states the minimum time per accel step to each of the
velocity ranges (the X Register Bit Settings are also included):

Velocity Range X Register Bits 3 - 2 Minimum time/step
48 kHz 0 0 1.3 msec
192 kHz 1 0 333 microseconds
256 kHz 0 1 500 microseconds
384 kHz 1 1 333 microseconds

Note: Switching into or out of 256 kHz range could result in loss of one
encoder count of feedback.

PMC Manual Additions/Corrections -6- ORMEC

Motion Synchronizing Characters

The effect of the ":" and ";" synchronization characters on MPL operation
has been changed. The effect of the synchronizing terminators on MPL
execution is as follows:
; wait for Constant Speed (including No Motion)
wait for an Acceleration to begin
, wait for the end of commanded motion

The following table indicates whether MPL program execution will "Wait" or
“Continue" as a function of the synchronization character used, and the
status of motion in progress.

No Motion Wait for Start Acceleration Constant Speed Deceleration

; Continue Wait Wait Continue Wait

Wait Wait Continue Wait Continue
, Continue Wait Wait Wait Wait
Notes:

1) "Wait for Start" refers to the time between the initiation of a motion
command and the actual beginning of motion. When an externally
triggered motion is commanded, this time can be significant because the
actual beginning of motion is dependent on receiving the Sensor or
Encoder Reference pulse (as selected by the Y-Register).

2) During a motion with "Index Extend" (Status Register Y, Bit 1) the ";"
sync character formerly did not allow MPL execution to continue during
the extended jog speed portion of the motion. It will allow MPL to
continue now. Conversely, the ":" sync character will now wait during
this period until the deceleration begins.

Delay on Commanded Motion

The DM command is now allowed during the JOG portion of an "Index
Extend" motion (set by Status Register Y, Bit 1).

Additions and/or Changes to Error Codes

A7 Reserved
Bl Index distance exceeded

B4 Deceleration cannot be triggered while system is accelerating,
decelerating or at rest

PMC Manual Additions/Corrections -7- ORMEC

