PMC-960

PROGRAMMABLE MOTION CONTROLLER

INSTALLATION AND OPERATION MANUAL
PMCS60f

Copyright (c) 1985
Ormec Systems Corp.

All rights reserved

19 Linden Park
Rochester, NY 14625

88.02.19

0.0 TABLE OF CONTENTS

TABLE OF CONTENTS

GENERAI. DESCRIPTION
1.1 INTRODUCTION .
1.2 SIGNAL NAMING CONVENTIONS

THEORY OF OPERATION

2.1 INTRODUCTION .

2.2 SYSTEM ARCHITECTURE OVERVIEW
2.2.1 Position Feedback Transducer . ..
2.2.2 Summing and Compensation Circuitry .
2.2.3 Modes of Operation .
2.2.4 Operation Overview . . .

2.3 MOTION PROGRAMMING LANGUAGE ARCHITECTURE .

c ONS . . .

3.1 GENERAL SPECIFICATIONS .
3.2 MECHANICAL AND ENVIRONMENTAL SPECIFICATIONS .
3.3 ELECTRICAL SPECIFICATICNS

.3.1 Power Supplies
Digital Inputs .
Digital Outputs
Analog Inputs
Analog Outputs

E
3
3.
3.
3
3
3 Serial Inputs/Outputs

Wi W W W
[+ S I = WS IS T]

INSTALIATION .
4.1 HARDWARE INTERFACE SPECIFICATIONS
4.2 SERIAL COMMUNICATIONS INTERFACE (JM6)
4.2.1 Connections on JM6 to Provide Power

4,2.2 Connections on JM6 to Implement RS-232 Communlcatlons

4.2.3 Connections on JM6 to Implement RS-422 Communications
3 SYSTEM BUS INTERFACE (JM1)
4,4 SERVODRIVE INTERFACE JM2 . . .
5 MACHINE 1/0 INTERFACE (JM3 & JM&)

4.5.1 Pin Assignment for JM3 Connector

4,5.2 Pin Assignment for JM4 Connector

4.6 SYSTEM POWER INTERFACE (JMS)

4,7 CONFIGURATION AREAS . .
4.7.1 Analog Configuration Jumpers (J?)
4.7.2 Tach Input Scaling Resistor (R12)

4.8 TUNING THE PMC . . .
4,.8.1 Adjusting the Veloc1ty Loop Galn .

£

4.8.2 Adjusting the Velocity Loop Integral + Proportional

Compensator .
4.8.3 Adjusting the POSltiOﬂ Loop Galn .
4.8.4 Adjusting the Velocity Feedforward Galn
4.8

.5 Adjusting the Position Loop Integral + Proportional

Compensator

OPERATION e e e
5.1 MPL COMMAND OVERVIEW .
5.2 MPL SYNTAX OVERVIEW
5.3 MPL CONVENTIONS
5.3.1 Display Characters

PMC960f -2-

Lnounoun

W00 00~ o~ o=t =) d

11
11
11
11
11
12
12
12
12

13
13
13
13
13
14
14
15
17
18
20
21
22
22

22
22

23
24
24

26
26
28
30
30

ORMEC

0.0 TABLE OF CONTENTS

5.3.2 Synchronization Characters, 30
5.3.3 System Status Polling o .. 30
5.3.4 Error Status Buffer L. 11
5.3.5 MFPL Break Features . . . e e e e 31
5.3.6 MPL Communications Checksum C e e e e e e e e e 31

5.4 SYSTEM PARAMETER REGISTERS 32
5.5 PARAMETER TABLE e e e e e e e 32
5.6 USE OF PARAMETER TABLE ON POWERUP e e e e e e e 32
5.7 SETUP PARAMETER RANGES AND UNITS . . . e e e 33
5.8 EDITING FUNCTIONS USED DURING PROGRAM MODE e e e e 34
5.9 HARDWARE ACCESSIBLE MOTION ROUTINES 35
5.10 EPROM PROGRAM BUFFER INITIALIZATION 36
ADVANCED PMC OPERATION« o . . o 36
6.1 MACHINE I/0 OPERATION . . . e e e e e 36
6.2 USE OF GENERAL PURPOSE 1/0 SIGNALS G e e 36
MPL OPERATION e e 38
7.0 MPL COMMAND DESCRIPTION .o e e e e e e e e e e 38
7.1 @ - LABEL MOTION CONTROL PROGRAMS e e e e e 38
7.1.1 MPL Program Label Support 35

7.2 A - ACCELERATION COMMAND « 39
7.3 B - BRANCH (GO TO) COMMAND 40
7.4 C - CAM COMMAND« .« o . oo 41
7.5 D - DWELL COMMAND . . . Ce e e e e e e e e e, 42
7.6 E - EXIT (RETURN) COMMAND C e e 42
7.7 F - FUNCTION COMMAND« .«« 43
7.8 G - GO COMMAND & e e e e e 4ey
7.9 H - HOME COMMAND e e e e e 45
7.9.1 Home Command Using Resolver Feedback e e e e 45
7.9.2 Home Command Using Encoder Feedback 46
7.10 T - INDEX COMMAND 47
7.11 T - J0OG COMMANDo 48
7.12 L - LOOP COMMAND % 49
7.13 N - NORMALIZE COMMAND « « o v v v o e 50
7.14 0 OUTPUT COMMAND . . . e e e e e e e e e e 51
7.1& 1 OA - Set Analog Outputs e e e e e e e e e 51
7.14.2 0B - Set Binary OQutputs 51
7.15 P - PROGRAM COMMAND ., . . . b e e e e e e e e e 52
7.15.1 Binary Programming Command e e e e e e e 53
7.16 R - CONTOUR COMMAND . . . C e e e e e e e 54
7.17 S - SYSTEM PARAMETER COMMANDS . e e e e 55
7.17.1 8B - Show last label and command count G e e e e 55
7.17.2 SD - Specify Adaptive Depth e e 55
7.17.3 SE - System Error (displays last error code) e e e 56
7.17.4 SF - System Following Errer T3]
7.17.5 8I - System Inputs «o 57
7.17.6 SL - Software Limits 57
7.17.7 SM - System Mode C e e e e 58
7.17.8 BSN - System Normallzatlon Error o e e e e 59
7.17.9 SP - System Profile 60
7.17.10 SS - System Snapshot (dlsplays Motlon Proflle reglster) : 61
7.17.11 ST - Set Torque Level at a Positive Step 62
7.17.12 SV - System Feedrate Override (veloclity) 63
7.17.13 SW - System Write Enable 63

PMCO60f -3- ORMEC

6.0

7.18 T

o B L |

N I N B B A B B I B I N
oy
oo

R R N N R I |

MATNTENANCE

.22.
.22
.22,
.22,
.22,
.22.
.22,

TABLE
.18.
.18.

.5a
.5b
.5¢
.5d
.Se

.18,
7.19 U -

5f

TABLE OF CONTENTS

MACHINE CONFIGURATION PARAMETERS

Display Automatic Feedforward Gain Sett1ngs
Table Gain Values .

Table Hardware Configuration

TF -
TG -
T™H -
THA
THB
THC
THI
THL
THM
TH?
THR
L -
™ -
TUA
TUB
TUH
TUP
TUS
TV

Specify Absolute Counts/Revolutlon

Specify Baud Rate

Specify Communications Format/Enable User Unlts
Specify PMC Axis Identifiers

Enable Inputs (IR07' & INO6') as L1m1t Inputs
Enable Muxed Input Support . .
Enable Hardware Program Buffer Protectlon .
Specify Motion Reference Configuration

Table Label Values .
Table Units Configuration .

Specify Acceleration Units Conver51on Factor
Specify Maximum Acceleration Parameter
Specify Home Speed Parameter .
Specify Position Units Conversion Factor

Specify Velocity Units (Speed) Conversion Factor

- Specify Maximum Velocity Parameter

UNTIL COMMAND .

7.20 V - VELOCITY COMMAND . Co

7.21 CREATING COMPLEX MOTION PROFILES
7.22 EXCEPTION HANDLING AND ERROR CODES
Cam Command Specific Errors
Input Range Error Codes
Syntax Error Codes

Motion Error Codes
Programming Error Codes
Miscellaneous Error Codes
System Status Errors .

LN N RN N

8.1 DIAGNOSTICS
8 2 PREVENTIVE
8.3 DEMAND

APPENDIX .

DO WD WO WO O
\JG\W-C‘MNP—'

TECHNICAL NOTES .
10,1 PMC SERIAL COMMUNICATIONS PROTOCOLS

PMC960f

BLOCK DIAGRAM
PMC-960 CORE DESIGN

SERIAL COMMUNICATIONS

GENERAL PURPOSE MACHINE I/0

PULSE GENERATION / INTERNAL I/0
PMC-960 - POSITION & VELOCITY LOOPS
MISC. 1/0 & DECOUPLER CAPS

64
64
65
66
66
67
68
70
70
70
71
71
72
73
73
T4
T4
74
75
75
75
76
77
81
gl
82
82
83
83
&3
83

85
85
85
85

86
Bé
87
88
89
30
g1
52

83
83

ORMEC

0.0 TABLE CF CONTENTS

GENERA]. DESCRIPTION

1.1 INTRODUCTION

The PROGRAMMABLE MOTION CONTROLLER (PMC-960) is a microcomputer based product
which facilitates the design of high performance motion control applications.
In combination with a servodrive, a servomotor, and an external resolver
interface, the PMC-960 is used to create a closed loop digital position system.
The resulting position control system translates easy to use commands and
motion parameters inte high performance motion. Acceleration, velocity and
distance are specified using ORMEC's Motion Programming Language (MPL), and
controlled by the PMC-960 to a high degree of precision.

MPL commands may be executed directly from the Serial Communications Interface
(SCI), or combined in non-volatile program memory (ZeroPower RAM) to create
motion control routines. This interactive aspect of MPL greatly reduces the
application effort required to implement sophisticated high performance motion
contrel systems compared with alternative approaches.

A PMC-960 based positioning system is designed to operate in a stand-alone mode
with either a terminal or a computer communicating to it through the Serial
Communications Interface (SCI). Communications to the PMC-960 are similar to
communications to a serial terminal. The PMC-960 receives motion commands by
processing individual bytes (characters) of information sent to it by a
terminal or computer. The acceptance of each character is indicated by the
hardware handshake line of the serial communications interface, and is usually
less than a millisecond. When a command is completely received, the PMC-960
executes it. When execution of the command is finished, the PMC-960 sends a
right brace character ")}" (which is ASCII Code 7Dyg) to the host to indicate
that it is "READY" for a new command.

These commands may also be programmed in the non-volatile MPL Program memory
for future execution. In this case, a sequence of MPL commands are entered
using the Program command. When programming is complete, the program may be
executed from the Serial Communications Interface using the Branch command. In
addition, up to 32 individual programs can be accessed from the Machine 1/0
interface. See the Machine I/0 interface installation section for details.

1.2 SIGNAL NAMING CONVENTIONS

Throughout this manual, references to inverted logical signals will use the
convention of following the signal name with an apostrophe ('). e.g. INPUT'
The drawings in the APPENDIXES and some charts or tables may use the "overbar"

notation,

For example: INPUT

Signals without apostrophes will be considered logically "true" or "asserted"
when they are "high" or "set" 1i.e. at the level of the power supply (either +5
VDC or +12 VDC). If they are at 0 VDC ("low" or "cleared"), they are
considered logically "false". e.g. A signal named RESET would be expected to
perform the "RESET" function when it is "true" or "asserted", which is when it
is "high" (at a +5 VDC level) or "set" (to a logical 1).

PMC960f -5- ORMEC

1.2 GENERAL DESCRIPTION

Conversely, signals with "overbars" or apostrophes following them are consi-

dered logically "true", or "asserted® when they are "low". e.g. A signal
named RESET' should be “low", or at 0 VDG, in order to perform the "RESET"
function. The term "logical complement" may be used in reference to signals

meaning that they will be "low" when the function is asserted, and "high" when
the function is not asserted.

PMC960F -6- ORMEC

2.0 THEORY OF OPERATION
THEORY OF OPERATION

2.1 INTRODUCTION

The PMC operates as an intelligent slave motion control system, receiving high
level commands wvia the Serial Communications Interface (SCI) and in turn
providing position and velocity reference information to the servo system. The
PMC-960 Block Diagram is described in APPENDIX 8.1 and the PMC-960 Core Design
is described in APPENDIX 8.2.

2.2 SYSTEM ARCHITECTURE OVERVIEW
2.2.1 Position Feedback Transducer

The PMC-960 is configured to utilize resolver information generated off-board.
This information is normally generated by a resolver to digital converter such
as the Analog Devices 1524 part. When a resolver is used, the signals needed
by the PMC-960 include both digital (up to 16 bits of position, RDCBSY, etc.)
and analog (TACH, InterLSB, etc.) informationm. This interface 1is fully
described in a following section. The position loop is closed using the full
word of position data from the R to D converter for maximum noise immunity.

As an alternative, the PMC-960 can use a digital position encoder that
generates phase quadrature signals. In this case the user must also provide an
analog velocity feedback signal. e.g. a d.c. tachometer

2.2.2 Summing and Compensation Circuitry

In order to cause motion of the digital position control system, the
microprocessor generates both analog velocity and digital position reference
data. The analog velocity information (velocity feedforward) is summed in the
velocity summing junction by an operational amplifier as a reference {(command)
input to the analog velocity loop. The digital reference information is
compared with the feedback information from either the R to D converter or the
digital position encoder in a digital Position Summing Junction (PSJ). The
contents of the digital PSJ is a count that is equivalent to the digital
position error present in the system. The least significant 12 bits of this
digital position error are converted to a bipolar analog voltage by the 12 bit
D/A CONVERTER.

The resultant position error signal (POSERR) is processed by the position
compensation amplifier. Here the position loop gain (PLGAIN) is adjusted over
a range of 1 to 255 (48 db) and an integral + proportional compensator can be
enabled and adjusted by setting PLCOMP.

Analog velocity information, generated by either an analog tachometer or the R
to D converter, is used to provide velocity feedback for maximum performance.
This velocity feedback signal is summed with the feedforward velocity reference
(FFVREF) and the compensated position error signal resulting in the current
command signal (ICMD}. This signal is used as the input to the servedrive.
Velocity loop gain (VLGAIN) is adjusted over a range of 1 to 255 (48 db) and an
integral + proportional compensator can be enabled and adjusted by setting
VLCOMP.

PMC960f -7- ORMEC

2.2 THEORY OF OPERATION
2.2.3 Modes of Operation

There are three operating modes of the PMC-960:

1. IDLE In this mode, the PMC-960 disables the "drive enable" output
(DRVENB') and disables the position and velocity loop compensation
circulitry.

2 VELOCITY In this mode, the PMC-960 operates as an analog velocity control
system, driving the velocity loop with an analog voltage derived by
the Reference Generation Circuitry. This voltage is applied to the
velocity loop through the feedforward gain adjust (FFGAIN). It may
also be used externally, by connecting to the external speed
reference output and adjusting the gain with the external gain
adjust (XGAIN).

This mode is useful for setup and troubleshooting of the servo
system, as well as being wuseful for advanced motion control
applications which change mode from position control to some other
feedback source such as force, tension etc. In velocity mode,
distance position data is not summed in the Position Summing
Junction (PSJ).

3. POSITION In this mode, the PMC-960 operates as a digital positioning system,
controlling speed and position as a phase lock position controller.
Digital position reference data derived by the Reference Generation
Circuitry is applied to the PSJ and an analog feedforward voltage
is applied to the velocity loop.

In this mode, the following error in the digital PSJ is monitored,
and if it exceeds the software following error limit (up to 32,767
counts), the system is returned to the IDLE mode.

2.2.4 Operation Overview

The PMC-960 initiates a position displacement by changing the digital position
reference data applied to the PSJ at a rate proportional to the desired
velocity. Simultaneously, the PMC-960 applies an analog velocity feedforward
voltage (FFVELREF) to the velocity summing junction to minimize the error
required in the Position Summing Junction.

The compensated current command signal (ICMD) is applied to the servodrive and
causes the servomotor to move the load the designated distance with the desired
velocity and acceleration.

The polarities of the forward/reverse command data and the feedback data are
such that the contents of the digital error summer are reduced as the position
feedback data is received (negative feedback). If the input digital position
data continues at a constant rate long enough for the transient to decay, the
digital feedback data will change at the same rate as the command data.

When the load moves a distance equivalent to the commanded change in position,
the value in the position summing junction will go to zero, causing the system
to stop. A system using a 12 bit resolver converter will move 1/4,096 of a
revolution, or one resolver distance unit, for each unit of command data.

PMC960f -8- ORMEC

2.2 THEORY OF OPERATION

Since the position loop is active, a holding force related to the position loop
gain will be present as required to hold the commanded output position.

2.3 MOTION PROGRAMMING LANGUAGE ARCHITECTURE

The PMC-960's Motion Programming Language is archirected to provide a logical,
consistent and easy to use set of commands which specify high performance
motion. The result is a calculator-like language which provides intuitive
commands and yet is concise enough for host computer operation.

Like a programmable calculator, or a computer running interactive BASIC,
commands may be executed directly in the interactive mode or combined in a
“program” or "routine"” for future automatic execution. These routines are
stored or edited in the "program buffer" using the Program command.

Because time is an important factor in most high performance motion control
applications, the language is designed to operate quickly, with most commands
requiring less than a millisecond and the longest commands requiring several
milliseconds.

In addition, the PMC-960 is architected to be able to service the real time
requirements of commanding a motion while simultaneously running this inter-
pretive language. This feature allows the PMC-960 to perform necessary
calculations to set wup future motions while simultaneously performing
positioning tasks, enabling the user to talk to the PMC-960 while it is
controlling motion.

An overview of the PMC-960's Motion Programming Language is found in the
following table:

PMC960fE -9- QRMEC

e . — —— . —— — — — e e ———— et e i St —— —— i — s — — . i, . S, i, i v, i

THEORY OF OPERATICN

MOTION PROGRAMMING LANGUAGE (MPL)

Motion Routine

| I
Function | Description | Commands

I |

I |
MOTION PARAMETER | Defining Motion | Velocity
COMMANDS | Parameters | Acceleration

| | Index

| | Home

| |

[I
MOTION ACTION | Creating Motion | Go
COMMANDS | | Index

| | Home

I | Jog

[| Cam

| | contouR

| I

[i
SYNCHRONIZATION/ | Synchronizing | Dwell
INTERFACE COMMANDS | Motion | Until

| | , & ; Synch

| Manipulating | Output

| Machine Outputs |

I I

! |
PROGRAM BUFFER | Entering or Editing | Program
COMMANDS | A Program | @ Labeling

I |

| I

I |

I I

I |

I |

I [

I |

I I

I |

| |

{ [

| |

PROGRAM CONTROL Utilizing Subroutines Branching
COMMANDS & Creating Complex Looping
Motion Control Function Call
Applications Exit
SYSTEM SETUP Selecting System Normalize
COMMANDS Options System
Table
PMCS60f -10-

I
!
!
I
I
I
|
!
|
|
|
I
I
I
I
|
I
|
|
|
|
I
I
|
I
I
I
|
I
I
I
I
I
I
I
|
|
|
I
|
|
|
|

ORMEC

3.1 SPECIFICATIONS

SPECTFICATIONS

3.1 GENERAL SPECIFICATIONS
CP

type 80C854a

speed 3.072 MHz
Motio Yam St

Mostek ZeroPower RAM 2k Bytes
Position loop

max following error 32,767 counts

max leading error 2,048 counts

max positioning speed 384.0 K counts/sec

3.2 MECHANICAL AND ENVIRONMENTAL SPECIFICATIONS
Mechanical and Environmental
Max dimensions 11.5"x 8.5" x 0.8"

Max weight one pound

Temperature ranges:

Operating 0 to +50 degrees C
Storage -25 to +125 degrees C
Relative humidity (w/0 condensation) 0 to 90%

3.3 ELECTRICAL SPECIFICATIONS
3.3.1 Power Supplies

+5 VDC 1.2A max
+12 VDC 0.15A max

3.3.2 Digital Inputs

Logical O Vin < 0.8 VDC Iin < -1 mA
Logical 1 Vin > 2.8 VDC Iin < 400 uwA
Minimum

Acceptance Time Max frequency
ESTOP' 4.5 msec
BREAK’ 4.5 msec
FAULT' 4.5 msec
EXTREF/EXTREF' 1.3 us 192 kHz
CHA/CHA' 8 usec for 192 kHz range
CHB/CHB' 8 usec for 192 kHz range
SENSOR/SENSOR'’ 8 usec for 192 kHz range

PMC960f -11- ORMEC

3.3 SPECIFICATIONS

. 3.3.3 Digital Outputs

I1.C. type SN7417N TTL buffer
max sink current -16 mA
max source current 400 uA

3.3.4 Analog Inputs

TACH Impedance > 680K ohm
Max voltage = +10 VDC (unless R12 installed)

ALOCK Impedance > 1M ohm
Max voltage = +10 VDC

3.3.5 Analog Outputs

I.C. type IM324N or LF412 Op Amp
Range +10 VDC
Max current 5 mA

Minimum Load 2K ohms

3.3.6 Serial Inputs/Outputs
‘ Standards EIA R5-232 and EIA RS-422
Protocol 8 data bits, 1 stop bit, no parity

RS§-422 Driver SN75174
RS-232 Driver §N75150

PMC960f -12- ORMEC

41 INSTALLATION

INSTALTATTON

4.1 HARDWARE INTERFACE SPECIFICATIONS
Many of the interface signals for the PMC-960 are "TTL Compatible". These 1,0
points may be implemented in hardware with LSTTL, TTL, NMOS, or Opte-Isolator

components. The specifications for TTL Compatible inputs and outputs are:

logical 0O Vin < 0.8 VDC logical 1 Vin > 2.8 vDC
Iin < -1 mA Tin < 400 waA

There are 5 signal connectors and a power comnector on the PMC-960 board. The
following describes each connector and all of the signals associated with it.

4.2 SERIAL COMMUNICATIONS INTERFACE (JM6)
This connector (25 pin male D-sub) is used as a communication path between a
terminal or computer and the PMC-960. It also provides low current power

source.,

4.2.1 Connections on JM6 to Provide Power

Pim# Signal Name Description
1 DGND Digital ground
7 DGND Digital ground
11 +12 VDC +12 VDC power supply
13 SHIELD EMI isolated shield ground
23 -12VDC -12 VDC power supply
25 +5 VDC +5 VDC power supply

4.2.2 Connections on JM6 to Implement RS-232 Communications

Pin# Signal Name Description

1 DGND Digital ground

2 TXD Transmit data from host

3 RXD Receive data from PMC

4 RTS Request to send from host
5 CTS Clear to send from PMG

7 DGND Digital ground

PMCS60£ -13- ORMEC

4.2

INSTALLATION

4.2.3 Connections on JM6 to Implement RS-422 Communications

.Pin#

Signal Name

(o]
7

21
14

2
18
19

17

Dno
DD

RDA

SDB

SbA

CSB

CSA

RSB

RSA

Receive data from PMC (complement of RDB)
Send data from host

Send data from host (complement of SDB)
Clear to send from PMC

Clear to send from PMC (complement of CSB)
Request to send from host

Request to send from host (complement of RSB)

4.3 SYSTEM BUS INTERFACE (JM1)

This connector (12 pin .1" Molex Block) provides for the bussing of the Motion
Reference Bus as well as bringing some test points to a convenient spot on the

board edge.
.Pin# Signal Name
1 ALOCKTP
2 FFCMDTP
3 ICMDTP
4 AGND
> EXVREF
6 XFFREF
. 7 ESTOP'

PMC960f

The mating connector is a Molex P/N 22-01-2127 or equivalent.

Description
ALOCKTP (Analog Lock Test Point) is a test point for
gaining easy access to the output of the analog lock
gain stage.

FFCMDTP (Feedforward Command Test Point) 1is a test
point for gaining easy access to the output of the
feedforward gain stage.

ICMDTP (Current Command Test Point) is a test point for
gaining easy access to ICMD.

Analog ground

EXVREF (External Velocity Reference) is a analog
output which is proportional to the commanded velocity
of the PMC. The gain of this signal is independently
software selectable.

XFFREF (External Feedforward Reference) 1is an analog
input which 1is required to be proportional to the
external reference frequency of the motion reference
bus. This becomes the reference voltage for the
feedforward circuitry.

Digital input that stops the current motion and breaks
the current motion control program. Upon detecting the
ESTOP’ input an emergency stop will occur. When that
deceleration is complete the PMC will go into mode O,

-14- ORMEC

4.3 INSTALLATION

disabling the motor. If there is no motion when the
ESTOP' input is asserted then the PMC will immediately
go into mode 0.

When the FAULT' or ESTOP’ inputs are asserted an
emergency stop 1s begun, Any attempt to command
another motion before that stop is complete will result
in a #B2 error.

Minimum acceptance time: 4.5 msec
Note that this input is also present on connector JM3.

8 DGND Digital ground
9 EXTREF EXTREF is an RS-422 driver/receiver tri-statable digi-

tal output/input for use as an external position
reference for distance-based motion commands.

10 EXTREF' EXTREF' is the logical complement of EXTREF
11 SHIELD EMI isolated shield ground
12 AGND Analog ground

4 4 SERVODRIVE INTERFACE JM2

This connector (34 pin male header) will interface a Brushless DC Servodrive to

the PMC-960, There are two main functions of this cable: returning to the
PMC-960 feedback information on speed and position of the motor and providing
controls to the drive based on the system operation. Digital and analog

grounds are interspersed around sensitive signals such as the low-level analcg
and lower 2 bits of POS to provide a degree of shielding from EMI. Mating
connector is a Berg P/N 66900-234 or equivalent.

Pin# Signal Name Description
1 ICMD ICMD (Current Command) 1s the analog velocity error

output of the velocity loop which is connected to the
input of the servodrive (analog output}.

2 AGND Analog ground

3 TACH This analeg input is for connecting the DC tachometer
when the maximum anticipated tachometer voltage is
between ¢ and 10 VDC. This signal should be negative
for "forward" motion of the servomotor. If a higher
voltage range is needed, location R12 of the PMC-960,
may be populated with a resistor.

4 AGND Analog ground

5 ALOCK ALOCK (Analog Lock) 10 wvolt peak analeg input which
provides a zero-crossing signal representing the motion
of the motor within one count.

6 AGND Analog ground

PMC960f -15- ORMEC

10

11

12
13
14

15

16

17

18
19
20
21
22
23
24
25
26

27

PMCO4OE

4

DRVENB*

DGND

DRVRDY'

DGND

BUSY

DGND
N/C
DGND

POS0O0

DGND

POS01

DGND

POs02
POS03
PS04
POSO05
POS06
POSO7
POSO8
POSO9

POS10 or CHA'

INSTALLATION

DRVENE' (Servodrive Enable) 1is an open collector
digital output signal used to control a solid state
relay which enables power to the servodrive and/or a
loop contactor. The equipment connected must provide a
pull-up resistor on this signal.

Digital ground

DRVRDY' (Servodrive Ready) is a digital input used to
indicate when the servodrive is powered-on and ready.

Digital ground

BUSY is a digital input which is high when the resolver
position inputs are changing.

Digital ground
Reserved
Digital ground

A digital Input which is the least significant bit of
the resoclver poesition

Digital ground

A digital input which represents one bit of the
resolver position

Digital ground

One input bit of resolver position

One input bit of resolver position

One input bit of resolver position

One input bit of resolver position

One input bit of resolver position

One input bit of resolver position

One input bit of resolver position

One input bit of resolver position

One input bit of resolver position. This input is also
used as CHA'--Encoder Channel "A" <(one of two
quadrature square wave signals and the logical
complement of CHA) and is present only when the
incremental position encoder wused has differential
outputs. If single ended encoders are wused, this

signal may be either left open or grounded.

-16- ORMEC

4.4 INSTALLATION

28 POS11 or CHA One input bit of resolver position. This input is also
used as CHA--Encoder Channel "A" {one of two quadrature
square wave signals) when the system is configured to
utilize enceder feedback. It is a digital input signal
with a "low" level of 0 VDC and and a "high" level of
between +5 VDC and +12 VDC.

29 P0S12 or CHBE' One input bit of resolver position. This input is also
used as CHB'--Encoder Channel "B" (one of two
quadrature square wave signals and the logical
complement of CHB) and 1is present only when the
incremental position encoder used has differential
outputs, If single ended encoders are wused, this
signal may be either left open or grounded.

30 P0OS13 or CHB One input bitr of resolver position. This input is also
used as CHB--Encoder Channel "B" (one of two quadrature
square wave signals) when the system is configured to
utilize encoder feedback. It is a digital input signal
with a "low" level of 0 VDC and and a "high" level of
between +5 VDC and +12 VDC.

31 POS14 or CHZ' One input bit of resolver position., This input is also
used as CHZ' (Encoder Channel "Z" when the system is
configured to wurilize encoder feedback and is the
logical complement of CHZ') and is present only when
the incremental position encoder used has differential
outputs. If single ended encoders are wused, this
signal may be either left open or grounded.

32 POS15 or CHZ A digital input which is the most significant bit of
the resolver position. This input 1is also used as
CHZ- -Encoder Channel "Z" when the system is configured
to utilize encoder feedback. CHZ 1is a "once per
revolution" reference signal. It is a digital input
signal with a "low" level of 0 VDC and a "high" level
of between +3 VDC and +12 VDC.

33 +5VDC +5 VDC power supply

34 SHIELD EMI isolated shield ground

4.5 MACHINE I/0 INTERFACE (JM3 & JM4)

This connector (2-50 pin headers--polarize) is divided inte the following
logical groups:

Controller Interface -- This interface is usually tied to a computer or
Programmable Controller which controls multiple units in a production line.
This interface is used to synchronize the execution of the machine profile with
other equipment.

PMC960f -17- ORMEC

4.5 INSTALLATICN

Operator Panel -- This interface contains signals that could be used on an
operator panel for a machine. These signals are read by the microprocessor and
require a minimum of 4.5 msec assertion time. The ESTOP switch can be wired up
to break the contrcl current and open a loop contactor which switches the drive
power. In addition the PMC-960 can also be wired up to sense when the ESTOP’
signal has been asserted at which time it would do an emergency deceleration

(defined max accel rate) and disable of the drive.

Machine 1/0 -- This interface has all of the signals that are associated with
the physical machine (i.e. limit switches, spindle, sensors, actuators, etc.)
that affect or are controlled by the profile program. Most signals will first
be processed by an 1/0 board. The General Purpose I/0 signals may be muxed for
the sake of minimizing interconnection between the PMC-960 and the 1/0 board.
41l of the digital signals on JM3 & JM4 are Opto-22 compatible. The one analog
signal (AOUT) can be made to act as an Opto-22 compatible output if 0 VDC and
+5 VDC are used as the output levels.

The mating connector for JM3 is Amp P/N 1-49%9506-2 and the mating connector for
JIM4 is Amp P/N 1-499506-2.

4.5.1 Pin Assignment for JM3 Connector

Pin# Sigpnal Name In/Out Description

1 ESTOP' in Asserting this input will stop the system motion
and cause the PMC-960 to return to the ready state.
i.e. abort any other activity taking place and
return to the interactive command level Upon
detecting the ESTOP' input an emergency stop will
occur. When that deceleration is complete the PMC
will go into mode 0, disabling the motor. If there
is no motion when the ESTOP’ input is asserted then
the PMC will immediately go into mode 0.

When the FAULT’ or ESTOP' inputs are asserted an
emergency stop 1is begun. Any attempt to command’
another motion before that stop is complete will
result in a #B2 error.

Digital input, 4.5 milliseconds minimum Note that
this input is also present on comnector JM3.

3 EXEC’ in A high to low tranmsition of this digital input
signal will start execution of the pre-programmed
routine selected by the TLV command.

5 FAULT' in Asserting this input will stop the system motion
and cause the PMC-960 to return to the ready state.
i.e. abort any other activity taking place and
return to the interactive command level

When the FAULT' or ESTOP' inputs are asserted an
emergency stop 1s begun. Any attempt to command
another motion before that stop is complete will
result in a #B2 error.

Digital input, 4.5 milliseconds minimum

PMC960f -18- ORMEC

4.5

11

13

15

17

16

21

23

25

27

29

31

33

PMCY960E

ADDR4’

ADDR3’

ADDR2 !

ADDR1’

ADDRO'

START'

BREAK'

SREADY'

SFAULT'

ouUTO3!

QUTO2'

ouTOol’

OUTO0’

INO7!

in

in

in

in

in

in

out

out

out

out

out

out

in

INSTALLATION

These digital input signals (ADDR4'-ADDRO’) allow
the user to specify a five bit motioen routine
address for hardware access of up to 32 user
programmable motion control routines.

To run one of the specified routines, place the
appropriate signals on these address lines and when
the PMC-960 is "ready", as indicated by assertion
of the SREADY' output, assert the START’ input,

Digital input signal for specifying motion routine
address

Digital input signal for specifying motion routine
address

Digital imput signal for specifying motion routine
address

Digital input signal for specifying motion routine
address

Asserting this input starts execution of the MPL
program at the specified motion routine address
(ADDR4 " -ADDRO " }.

Asserting this input terminates execution of any
MPL program in progress and causes the PMC-960 ro
return to the SREADY' state

The SREADY' output is asserted whenever the PMC-960
is ready for a command

The SFAULT’' output is asserted whenever an error
occurs and is turned off when the next command is
initiated.

The four general purpose digital outputs on this
connector (OUT03’'-QUT00’) and 12 outputs on JM&
(OUT15'-0UT4’) may be changed using the OB command.

General purpose output
General purpose output
General purpose output

The eight general purpose inputs on this connector
(INO7'-INOO') and the eight inputs on JM4 (IN1S'-
INOCB') may be read using the SI command which
reports the status of the general purpose inputs.
These pgeneral purpose inputs may alsc be used by
the conditional Branch, Exit, Function and Until
commands.

-19- ORMEC

4.5

35
37
39
41
43
45
47
49

EVEN

INO6
INOS’
INO4!
INO3"’
INO2!
INOL’
INGO'
+5V

DGND

in

in

in

in

in

in

INSTALLATION
General purpose inputs INO7' & INO6' are used for +
and - limits if they are enabled by setting the
select limit input bit utilizing the THL command
General purpose input
General purpose input
General purpose input
General purpose input
General purpose input
General purpose input
General purpose input

+5 VDC low current supply for Opto-22 rack use

Digital ground

4.5.2 Pin Assignment for JM4 Connector

Pin# Signal Name

1

3

11

13

15

17

PMCS60f

AGND

AQUT

SENSOR'

SENSOR

OUT15'

ouTla!’

OUT13’

ouT12’

oUT11’

In/Out

out

in

in

out

out

out

out

out

Description
Analog ground

General purpose 12 bit analog output settable by
executing an OA command.

SENSOR' is the logical complement of SENSOR, and is
present only when the machine sensor used has
differential outputs. If a single ended sensor is
used, this signal may be either left open or
grounded.

SENSOR (Sensor Input) is a machine sensor signal
which may be used to synchronize motion to an
external event. When a motion is primed to start,
begin deceleration or stop on this signal, the
signal has immediate effect (less than two encoder
counts) .

The twelve general purpose digital outputs on this
connector (OUT15’-0UTO4') may be set by the OB
command .

General purpose output

General purpose output

General purpose output

General purpose output

-20- ORMEC

4.5 INSTALLATION

19 OUT10°’ out General purpose output
21 ouTO09! out General purpose output
23 ouTo8!’ out General purpose output
25 ouTOo7! out General purpose output
27 OUTO6’ out General purpose output
29 oUTO5 ' out General purpose output
31 oUTO4 ' out General purpose output
33 IN15* in The eight general purpose inputs on this connector

(IN15'-INC8') may be read using the ST command
which reports the status of the general purpose
inputs. These general purpose inputs may also be
used by the conditional Branch, Exit, Function and
Until commands

35 IN14' in General purpose input

37 IN13’ in General purpose input

39 IN12' in General purpose input

41 IN1Y'’ in General purpose input

43 IN10O’ in General purpose input

45 INO9' in General purpose input

47 INO8’ in General purpose input

49 +5V --- +5 VDC low current supply for Opto-22 rack
EVEN DGND --- Digital ground

4.6 SYSTEM POWER INTERFACE (JM5)

This connector (.156 Molex) provides the PMC-960 with its power. The PMC-960
itself uses three regulated voltages (+5/+12/-12). The mating connector is
Molex P/N 09-50-3081 or equivalent.

Pin Assignment for JM5 Connector

Pin# Signal Name Description

1 +12 VDC +12 VDC power supply

2 AGND Power supply analog ground
3 -12 vDC -12 VDC power supply

PMC960f -21- ORMEC

4.6 INSTALLATION

4 POLARIZE This pin is removed from JM5 to allow polarization
of the matching connector,

5 +5 VDC +5 VDC power supply

6 +5 VDC +5 VDC power supply

7 SHIELD EMI isolated shield ground

8 DGND Power supply digital ground

9 DGKD Power supply digital ground

4.7 CONFIGURATION AREAS
4.7.1 Analog Configuration Jumpers (J7/)

The default configuration for the analog section provides an internal reference
voltage to the feedforward circuitry. In addition, it provides a bipolar
velocity reference signal on JM1, Pin 5. The default jumpers are placed on J7/,
Pins 1-3 and Pins 2-4. See Appendix 9.6 for detailed schemrmatic.

To use the PMC-960 in the slave mode with feedforward enabled, the "master" PMC
needs to provide a unipolar velocity reference which can be implemented by
changing the jumpers on J7 from Pins 2-4 to Pins 4-6. The "slave" PMC should
get its feedforward reference from JM1, Pin 6 and the jumpers must be changed
from J7, Pins 1-3 to J7, Pins 3-5. It is alsc necessary to hook the master
PMC's JM1, Pin 5 to the slave PMC's JM1l, Pin 6.

4.7.2 Tach Input Scaling Resistor (R12)

By default, the PMC-960 uses a tachometer input with a maximum range of =10
VDC. By providing a resistor at location R12, the user may scale the tach
input such that: (R12/(R12+55K))*(Tach Range) < +10 VDC. Example: If you want
to use a tachometer that has a full-scale range of 35 volts, then an acceptable
value for R12 is 22K ohms.

4.8 TUNING THE PMC

Once installation is complete, and serial communications is established, you
are now ready to "tune" the servo loops of your PMC. The recommended strategy
for tuning the PMC is to perform the following adjustments in the order listed.

VELOCITY LOOP: Adjust the Velocity Loop Gain (TGAIN & VLGAIN)
Adjust the Integral + Proportional Compensator (VLCOMP)

POSITION LOOP: Adjust the Position Loop Gain (PLGAIN)
Adjust the Velocity Loop Feedforward Gain (FFGAIN)
Adiust the Integral + Proportional Compensator (PLCOMP)
Adjust the Analog Lock Gain (ALGAIN)

PMC960f -22- ORMEC

4.8 INSTALTLATION

4.8.1 Adjusting the Velocity Loop Gain

This adjustment (VLGAIN) is provided to adjust the gain in the analog velocity

loop closed by the DC tachometer. It is adjustable from a wide range of 1 to
255 (48 db) to be compatible with a variety of servodrives, servomotors and
tachometers. The range of the DC tachometer voltage should have been deter-

mined, and the tach signal scaled (using the TGAIN parameter) such that the
output of UA5SA is 10 volts for maximum speed.

Your servomotor and servodrive must now be wired to the PMC, and power must be
applied to the servodrive. Before applying power to the servodrive, the motor
should be bolted down, and the first time this exercise is attempted it is
better if the mechanical load is not attached. For optimum response, it will
have to be tuned again after the load is attached. CAUTION: When you apply
power and enable the servodrive using the SM1 command below, your motor may
start running at high speed because the velocity feedback is positive and not

negative. If this happens, reverse the velocity feedback to remedy the
situation.

The recommended approach to tune the velocity loop is to put the PMC in the
Velocity Mode using the SMl<er> command, adjusting the wvelocity loop feed-
forward gain (FFGAIN) with a TGF100<cr> command so that the PMC can provide an
analog velocity loop test command signal.

For tuning the servo system, the PMC velocity parameter should be set for
between one and five revolutions per second, and a commanded acceleration rate
of five msec or less.

For example, if your position feedback transducer has a resoclution of 4,096
counts per rev, commanding it at one rev per second will take a velocity
parameter of 4.1 kHz. To accelerate to this rate in five msec, the
acceleration parameter should be set for 800 Hz/msec. Performing an index of
4,096 counts will then cause & one revolution motion, which has 5 msec
acceleration time and takes a total of approximately one second. This test
signal should be quite appropriate for tuning most systems.

However, you should adjust the parameters in the Tuning program as appropriate
for your individual system if it seems too fast or two slow. Alsc note that,
since the feedforward gain is not yet calibrated, the arbitrary setting of
TGF100 may not be commanding a proper speed. The times for the signal will be
correct, however, and the feedforward gain can be adjusted as seems proper.

Tune the system by repetitively executing the test motion while raising the
velocity loop gain. Observe the tachometer signal and, when it overshoots or
the system exhibits resonance by oscillating or "buzzing". Note that the PMC
can report its gain and compensation parameters during the tuning process,
using the command TG?.

The wvelocity loop "rise time" (time to go from 10% to 90% of full value) for
most servo systems should be between 3 and 15 mseec, as long as the system is
operating in "small signal" mode. To be operating in small signal mode, the
commanded velocity must be small enough so that the motor voltage and current
do not saturate (limit). Normally a speed of between one and five revs per
second will not saturate the servo system.

PMC960f£ -23- ORMEC

4.8 INSTALLATION
4.8.2 Adjusting the Velocity Loop Integral + Proportional Compensator

Once VLGAIN is adjusted for no overshoot, but with a reasonably fast rise time
(under 10 msec, and possibly under 5 msec), VLCOMP should be adjusted. VLCOMP
has a range of 0 to 255, and the velocity loop break frequency (in Hz) is equal
to VLCOMP/20. The object is to raise the compensator break frequency (and
therefore the value for VLCOMP) to the maximum possible without adding
objectionable overshoot to the tachometer response. This is done by using the
TGB command from the terminal, and "Jogging" or "Indexing" the system to
determine the effect.

4.8.3 Adjusting the Position Loop Gain

This adjustment (PLGAIN) is provided to adjust the gain in the digital position
loop closed by the incremental position encoder. It is adjustable from a wide
range of 1 to 255 (48 db), to be compatible with a variety of servodrives,
servomotors, tachometers and position encoder resolutions.

CAUTION: Your motor may start oscillating or running at high speed when the
system is put in "position mode®™ using the SM2 command because the position
feedback is positive and not negative. Reverse the position feedback to remedy
this situation.

Put the PMC in Position Mode by typing SM2<cr> and turn off the velocity loop
feedforward gain by typing TGFO<ecr>.

With your oscilloscope still attached to the tachometer signal, watch the tach
signal and cause test commands to occur, increasing the position loop gain
using the TGP command. When the tach test signal overshoots, determine the
setting of PLGAIN that was achieved by typing TG?. The PMC will respond with
the values for the gains and the compensators. '

Once PLGAIN is adjusted to achieve a reasonably fast rise time (under 20 msec,
and probably under 15 msec), FFGAIN can then be adjusted.

4.8.4 Adjusting the Velocity Feedforward Gain

Adjustments to the velocity reference feedforward gain (FFGAIN) should be made
once the velocity loop gain and the position loop gain have been properly
adjusted.

The adjustment procedure is to "Jog" the system in the Position mode (MODE 2)
by typing J+<cr> and then raise the FFGAIN using the TGF command. You will
observe during this process that the position following error will be reduced
each time FFGAIN is raised. If the following error goes negative, the system
is leading the commanded position, because the feedforward gain is too high.
When the following error gets near O, the feedforward gain 1is properly
adjusted.

To determine the setting of FFGAIN that was achieved, type TG?. The PMC will
respond with the values for the gains and the compensators.

PMC960f -24- ORMEC

4.8 INSTALLATION
4.8.5 Adjusting the Position Loop Integral + Proportional Compensator

PLCOMP has a range of 0 to 255, and the position loop break frequency (in Hz)
is equal to VLCOMP/67. The object is to raise the compensator break frequency
(and therefore the value for PLCOMP) to the maximum possible without adding
objectionable overshoot to the tachometer response. With your oscilloscope
still attached to the tachometer test signal, adjust the compensator value
using the TGE command until the response is as desired. Note that for systems
where the position error is not critical other than at rest, the position loop
integral + proportional compensator is unnecessary.

The servo system is now highly tuned, and don’t forget to adjust the
acceleration rate to a properly chosen, and probably lower, value before
attempting accelerating and decelerating to high speeds. Failure to do so will
likely result in severe overshoot and may "trip out" the system due to excess
position error or drive fault.

4.8.6 Adjusting the Analeg Lock Gain

1f position system dither on the least significant bit of the position feedback
is a problem, and you are using a resolver with an inter-bit analog output, the
ALGAIN adjustment can be used. Dither can be observed by using the SF:
command . To eliminate the dither, progressively raise the analog lock gain
using the TGL command until the dither stops. Should you continue to raise the
gain, and the setting gets too high, the dither will resume.

PMC960£ -25- ORMEC

5.0

OPERATION

OPERATION

5.1 MPL COMMAND OVERVIEW

ORMEC’s Motion Programming Language (MPL) has 21 basic commands, which can be
used in hundreds of variations to meet specific application needs and create
robust motion control routines. Below is a brief overview of the MPL command
areas and their basic functions in creating motion control applications.

Command Name

@

0
0A

PMC960f

(label)

ACCELERATION

BRANCH (GOTO)

CAM

DWELL

EXIT (RETURN)

Description/Function

Establish a single-letter program label in the program
buffer for future reference,.

Set or examine the acceleration rate

Transfer MPL program execution to a program label with
no return.

Perform distance based velocity changes.

Delay a specified time interval (in msec) before
executing the next command.

Exit an MPL subroutine and return to the MPL statement
after the original subroutine call.

FUNCTION(GOSUB) Transfer MPL program execution to a program label.

HOME

INDEX

JOG

LOOP (REPEAT)

NORMALIZE

OUTPUT
analog

When an Exit command 1is executed, MPL operation
resumes at the line following the original "F com-
mand” .

Move to the specified absolute position of the system.
Examine the system’s absolute position or commanded
absolute position.

Move at the specified Homing speed to the resolver
zero reference or machine sensor.

Move a specified distance relative to the current
position.

Move at the specified jog speed.

Transfer program execution to a program label a spec-
ified number of times, and then continue program exe-
cution with the next command in the program buffer.
Define the current physical position. Reset the

PMC-960 firmware. Initiate Serial Communications
Interface Autobaud Sequence.

Set general purpose Machine outputs.
- set analog output

-26- ORMEC

5.

PMCS60L

1

OB

SB
SD
SE
SF
SI
SL
SM
SN
SP
)
ST
sV
Sw

TF

TG

TGP
TGV
TCGT
TGF
TGE
TGB
TGX
TGL

TUA

TUS
TUB

binary
PROGRAM

QUIT

CONTOUR

SYSTEM
last label

adaptive depth

error codes
following err
inputs
software limi
mode
normalize err
profile
snapshot
torque
feedrate
write enable

TABLE
feedforward

TABLE GAINS
position loop
velocity loop
tach
feedforward
pos compensat
vel compensat
external vref
analog lock

TABLE UNITS
acceleration
position
velocity

max accel
max velocity
home speed

or

ts

ar

or
or

TABLE HARDWARE

absolute coun
baud rate
communication
hardware ID
limit switche
address outpu

ts

5

s
tsg

OPERATION

set binary outputs

Enter, edit or examine a motion program.

Terminate execution of MPL from the program buffer and
return to the interactive (READY) mode.

Cause the PMC to execute a complex contoured motion,
where the motion is defined in position-time segments.

Select System Parameters.

display last label and command count

set adaptive depth

display last error code

display/set following error

set general purpose machine inputs

set software end-of-travel limits

system mode (idle, velocity or position modes)
display normalization error

motion profile parameters

display snapshot of motion profile

set torque level at positive stop

system feedrate override (velocity)

enable writing to program buffer & table parameters

Select machine configuration in Parameter Table.

L}

motion reference-
software limits -

TABLE LABELS

display table of feedforward gains

select gain and compensation values
select position loop gain

select velocity loop gain

select tach gain

select feedforward gain

select position loop compensator

select velocity loop compensator

select external velocity reference gain
select analog lock gain

select units conversion & maximum A,V,H parameters
acceleration units conversion factor

position units conversion factor

velocity units conversion factor

maximum acceleration parameter

maximum velocity parameter

home command speed parameter

specify system hardware configuration

specify absolute counts per revolution
specify baud rate

specify communications options

assign hardware ID

enable limit switches (on/off)

enable muxed address outputs (on/off)

select motion reference configuration

enable software limit control

store default program <labels> to parameter table

-27- ORMEC

5.1

MPL branch
power -up

TLB
TLP
TLV
1Y)
v

machine I/0

5.2 MPL SYNTAX OVERVIEW

OPERATION

- select label to execute from MPL branch command
- select label to execute on power-up or N* command
- select label to execute from Machine 1/0 (EXEC')

UNTIL Wait until the specified machine input condition is
true before executing the next MPL command.
VELOCITY Set or examine index speed in the Motion Buffer.

In the following description of MPL syntax, the following symbols are used:

< > -
-
{ } -

| -

Acceleration
Branch
Cam

Dwell

Exit Program

Function Call

Go

Home
-resolver
-encoder

Index

Jog

Loop

Normalize

Qutput

Program
Quic
System

Table

PMC9601f

A <rate> <ecr>

B <label> [<hex>[:<mask>]] [<syne>] <cr>
C [<sign>] <position> [:<speed>]

C [<sign>] <position> [:<speed>] <cr>
CA

D [<time>] [<sync>] <ecr>

E [<hex>[:<mask>]] [<sync>] <cr>

F <label> [<hex>[:<mask>]] [<synec>] <ecr>
G <position> <direction> <cr>

H [<speed>] «direction> <cr>

H <direction>

I [<distance>] #<directiomn># <cr>

J [<speed>] #<direction># <cr>

L <label> [<loop counter ID>] <count> <cr>
N f[<position>] <direction> | N#*
OA <hex> [:<mask>] <cr>

OB <hex> [:<mask>] <cr>

P <program> <text>

Q [<hex>|:<mask>»]] [<syne>] <ecr>

SB <display>

SD <depth> <cr>

SE <display>

SF <error> <cr>

81 [<hex>] <display>

SM <mode> <cr>

SN <display>

SP <hex>

85 <display>

ST <torque> <cr>

5V <value> <cr>»

SW <value> <cr>

designates a required variable
the enclosed item (or items) may be repeated multiple
the enclosed item (or items) are optional
designates the OR operator

T <display>

TF <display>

TG #<register> [<value>] #<sign>##<cr>
TH <parameter> <value> <cr>

TL <vector> <label> <cr>

TU <parameter> <value> <cr>

-28-

—_—— ———

times

A <display>

G <display>

<display>
<display>
<display>
<display>

LSRN I ol

N<er>

0A <display>
OB <display>
P <label> <t
5D <display>
SF <display>
SM <display>
SP <display>
ST «display>

SV <display>
SW <display>

ext>

TG
TH
TL
TU

<display>
<display>
<display>
<display>

ORMEC

5.2

Until
Velocity
(Label)

OPERATION
U [<hex>[:<mask>]] [<sync>] <ecr>
V <speed><cr> | V<display>
@ <label> <text> <cr> | @ <text> <cr>

Explanation of Syntax Variables

<count>
<cr>

<depth>

<direction>

<display>

Zdistance>

<error>
<hex>
<label>

<mode>

<position>

<program>

<rate>

<register>

<sign>

PMC960f

Number of times for operation to be repeated
Carriage return (ODH)

distance in counts which gives the stopping distance when using
adaptive depth control

+/- positive/negative <speed>, <position> or <distance>
* stop system motion

<synec> permitted in most cases

? display last entered value

! display current system value

8 [<time>] display value each <time> interval

& display value at time of last error

integer in user defined units which gives the number of relative
units

integer specifying following error
Hexadecimal characters (0-9, A-F)
Displayable character used to identify a motion routine

Control mode: O=idle; l=velocity; 2=position; 3=position with-
out resetting position summing junction

integer in user defined units of absolute position

Enter, edit or display MPL program buffer:

{ initiate programming at beginning of program buffer
<ecr> initiate programming at end of program buffer

? display program buffer from the beginning

! display entire program buffer

integer in user defined units of acceleration

Table {(Gain):

P=(position gain)

V=(velocity gain)

T=(tach gain)

F=(feedforward gain)

E=(position loop compensation)
B=(velocity loop compensation)
X=(external velocity reference gain)
L=(Analog Lock Gain)

+/- add/subtract <value> to/from <register>
<cr> set <register> to <value>

-29. ORMEC

5.2 OPERATION

<speed> integer in user defined units of speed

.<sync> Synchronization characters for coordinating motion:
, wait until current motion is complete
; wait until constant speed or motion complete

<text> Motion routines, comments or editing command characters
<time> Time in milliseconds
<value> value substituted for, added to or subtracted from <register>

5.3 MPL CONVENTIONS

Now that we have an understanding of the purpose of each command, there are
basic constructs in the architecture of MPL which deserve special mention since
they are widely used and to make it easy to understand and use.

5.3.1 Display Characters

MPL simplifies monitoring a motion control application by displaying
information on the actual status of the system. This includes providing infor-
mation on parameters in the motion buffer by typing a command and a (?), data
on the system's current values by using a (!), repeatedly displaying the
system’s current values by using a (%), or the system's values as they were on
the last error by using a (&).

..3.2 Synchronization Characters

MPL's synchronization characters (, and ;) offer an effective method for
coordinating MPL commands with motion in progress. The comma (,) waits for the
previous motion to be completed before executing a new command, and the
semi-colon (;) waits for the system to reach a constant speed or the motion to
be completed before executing a new command.

5.3.3 System Status Polling

System status polling is a feature which allows the user to monitor PMC
operation. A simple two-character sequence entered at any time during PMC
operation will return a variety of status information.

The following table gives the recognized characters and what status values will
be returned. The value will be returned in the same format as if a !
terminator had been used in an MPL command. System status polling for each of
these functions is executed by holding down the ’‘Control’ and pressing the ']’
key followed by the single-letter command below.

Command Parameter Equivalent MPL Command
b Last @ label passed ---
f Current Following Error SF!
g Current System Position G!
h Communications Checksum ---
. i Distance to go It
m Motion parameters SS!
s System Inputs ST!
v Current System Velocity V!

PMCY960f -30- ORMEC

5.3 OPERATION

Note: These single letter commands must be entered as lower case letters for
System Status Polling to operate properly.

5.3.4 Error Status Buffer

The PMC-960 has a feature where several system values are stored away when an
error occurs. An error can be caused by an external fault, an impossible
command request, etc. It is, many times, useful to know what the state of the
PMC-960 was when an error happens, To retrieve this information the ampersand
{&) terminator is used for the various commands as you would use the ! or 7
terminator. The parameters available are: system speed (V&), system
position{G&), system snapshot (SS&), general purpose inputs (SI&), last label
passed (SB&), general purpose outputs (0OB&), system mode (SM&) and last ervor
message (SE&).

5.3.5 MPL Break Features

When MPL is executing a program or waiting for some event to finish (e.g. , ;
dwell command) it is sometimes desirable to abort the program. This can be
done by sending an ESCAPE character (ASCII 33H) if the SCI is established. If
the SCI has not been established (meaning that the baud rate has not been
specified) then any character sent to the PMC-960 on the SCI will abort the
program eXecution.

There are four signals which can be used to break MPL program execution, stop
the motor using a fast deceleration and/or disable the motor. The following
chart details the specific function of each of these signals:

Signal Break MPL Program Emergency Stop Disable Motor
BREAK' (JM3) yes no no
ESTCP* (JM3 & JM1) yes yes yes
FAULT® (JM3) yes yes no
DRVRDY'® (JM2) yes no yes

5.3.6 MPL Communications Checksum

The PMC maintains a checksum for all serial communications. This is a 16 bic
sum of all characters received since the last communications checksum system
status poll request. Note that system status poll requests are not included in
the checksum total.

When a communications checksum system status poll is received, the PMC will

return the current checksum total and also reset the checksum to 0. The
checksum display request can be sent at any time.

PMC960f -31- ORMEC

5.4 OFPERATION
5.4 SYSTEM PARAMETER REGISTERS

There are several read-only system status registers that provide feedback to
the user on the status of system operation. They are: last error code (SE),
general purpose inputs (SI), normalize wvalue (SN), and a motion snapshot

register (S55). The system status registers are examined with the 5 command.

The read-write SP system register offers the user a variety of methods for

starting and stopping motion, providing a wide range of motion profiles, The
8P register is organized as 8 bit-switches which turn on and off certain
features of the Index and Go command motion profiles, These features include:

starting and stopping on external sensor, starting and stopping on the zero
reference input, extending an Index motion until a sensor or zero reference
signal, etc.

5.5 PARAMETER TABLE

The PMC-960 has a system parameter table which defines the default operating
mode . This parameter table is stored in non-velatile RAM and can only be
changed when a protection bit has been set to allow non-volatile modification.
Once this bit is set, the user can use the T command to modify parameters. The
T command 1is split up into several subcommands each with a sub-command
character identifying it.

Examples of the subcommand are: Gain Adjustments (IG) containing wvalues
associated with the wvelocity and position loops, Units (TU) which consists eof
some limits on numeric values and the engineering constant, Hardware (TH) which
has parameters for SCI communications, reference configurations, limit input
modes, ete., and finally Labels (TL) which contains definitions of the powerup
label and vectored execute label.

5.6 USE OF PARAMETER TABLE ON POWERUP

When power is applied to the PMC-960, parameters from the parameter table area
are used to determine serial communications configuration, MPL routine to
execute, gain values to set, etc. In some cases, it is possible that the user
could set a parameter which would effectively lock himself out of communicating
with the PMC-960 (i.e. Baud Rate value or Axis ID). To help the user in this
kind of situation, the PMC-960 has a method of being powered up in a default
mode other than that specified by the parameter table.

To power up the PMC-960 in the generic mode, the ESTOP’ line must be asserted
{grounded) before powering up or the RESET' line is pulsed. When that is done,
many of the parameters are ignored and a wvalue of zero 1s assumed and no
powerup MPL program will be executed. Since the baud rate parameter is assumed
zero, the normal autobaud sequence is executed and the communications format is
interactive decimal for ease of debugging.

Additionally, if any of ESTOP'’, FAULT' or BREAK’ are asserted (grounded) during
powerup then the powerup MPL program will not be executed. Note that the test
of these signals is done after the powerup diagnostics execute which results in
the signals being tested about 2 seconds after power-up.

PMC960f -32- ORMEC

5.7

5.7 SETUP PARAMETER RANGES AND UNITS

Motion Parameters

Acceleration |
Jog | 48kHz
Velocity | Mode
Home |

Acceleration |
Jog | 192kHz
Velocity | Mode
Home |

Acceleration
Jog

Velocity
Home

I

| 384kHz
| Mode
I

Acceleration |
Jog | Ext
Velocity | Mode
Home |

Index

Go
Normalize
Dwell
<Label>

Tuning Parameters
Position Loop Gain
Velocity Loop Gain
Tachometer Gain
Feedforward Gain
Position Loop Compensator
Velocity Loop Compensator
External Vel Ref Gain
Analog Lock Gain

PMC960f

Range

0-65,534
2-10,000
2-10,000
2-10,000

1-2,147,483,648
0-1,073,741,824
0-1,073,741,824
0- 65,535
22, to 7A4

0-255
0-255
0-255
0-255
0-255
0-255
0-255
0-255

-33.

Factory Settings

4000
100
400

20

LI o I e 8 o I

16
16
160

oo OO

OPERATION

Units

100 Hz/sec

10 Hz
10 Hz
10 Hz

kHz/sec
100 Hz
100 Hz
100 H=z

kHz/sec
100 Hz
100 Hz
100 Hz

100 counts
.01%
.01%
.01%

counts
counts
counts
msec

ORMEC

5.8

OPERATION

5.8 EDITING FUNCTIONS USED DURING PROGRAM MODE

. Cursor Right

Cursor Left

Cursor Down

Changes

Insert Line

Kill Line

Exiting

Program Erase

PMCY960f

TAB (CTRL-I) or CTRL-Y moves the cursor to the right one
character at a time. Moving the cursor to the end of the line
and continuing to tab will move the cursor to the beginning of
the next line.

BACKSPACE (CTRL-H) or DELETE moves the cursor to the left one
character at a time. Moving the cursor to the beginning of
the line and continuing to backspace will move the cursor to
the beginning of the previous line.

LINEFEED moves the cursor down a line at a time.

To change a motion control program, put the cursor at the
point to be changed and overtype the desired information.
Periods (.) may be used to overtype additional undesired char-
acters or to reserve program buffer space for additiocnal
future commands or parameter changes.

Typing CTRL-V allows text to be inserted in the program buffer
at the point of the cursor. After a CTIRL-V, all characters
typed are put into a 40 character RAM buffer until a second
CTRL-V is typed or the RAM buffer is full. At that time,
space is made in the program buffer and the characters are
written to program buffer memory. If the insert operation is a
result of the 40 character buffer being full, the insert
operation is continued atter the buffer is emptied. An ESCAPE
can be used to exit from insert mode without inserting any
characters.

CTRL-K deletes unwanted characters in the program buffer.
When CTRL-K is typed, all characters from the cursor to the
end of the line (next carriage return) will be deleted.

The ESCAPE key is used for exiting the program command.

Typing a } in column 1 (immediately after a <cr>) will erase
the program buffer, starting at the current location, and exit
the program command. Note that executing this command will
erase all information from the cursor to the end of the
program buffer.

<34. ORMEC

5.9 OPERATION

5.9 HARDWARE ACCESSIBLE MOTION ROUTINES

HARDWARE ACCESSIBLE MOTION ROUTINES

(Signals at connector JM3)

|
l
Program |
Label | ADR4 ADR3 ADR2 ADR1 ADRO
| JM3- 7 9 11 13 15
R R e Lt L e R i
| @ (40g° | 1 1 1 1 1 !
! A (41, | 1 1 1 1 0 |
I B (4240 | 1 1 1 0 1 |
| C (435 | 1 1 1 0 0 |
Fommm e I e R R | 2 address lines |-------- |
| D (4457 | 1 1 0 1 1 |
| E (4557 | 1 1 0 1 0 |
| F (46, | 1 1 0 0 1 [
[G (474 | 1 1 0 0 0 |
I R | 3 address lines |
| H (485’ | 1 0 1 1 1 |
| I (49, | 1 0 1 1 0 |
] J 44y’ | 1 0 1 0 1 f
I K (4B’ | 1 0 1 0 0 !
I I F
! L (4Cy’ | 1 0 0 1 1 !
i M (4Dy’ | 1 0 0 1 0 |
| N (4Ey) | 1 0 0 0 1 |
| 0 (4Fy) | 1 6 0 0 0 |
Fo-omoo-- - I | 4 address lines |
I P (5047 | 0 1 1 1 1 |
G (51’	0 1 1 1 0
R (5257	0 1 1 0 1
S (53y	Q 1 1 0 0
T (5457	0 1 0 1 1
U (5547	0 1 0 1 0
V (5647	0 1 0 0 1
[W (57	0 1 0 0 0
! I	
i X (585"	0 0 1 1 1
Y (594	0 0 1 1 0
Z (54,7	Y 0 1 0 1
[(5By}	0 0 1 0 0 {
I I 1	
t \ (5C4)	0 0 0 1 1
] (5Dg’	0 0 0 1 0
" (SEg’	0 0 0 0 1
_ (5%’	0 0 0 0 0
R R | 5 address lines |
1 => high TTL level 0 => low TTL level

PMCS60E -35- ORMEC

5.10 OPERATION
5.10 EPROM PROGRAM BUFFER INITIALIZATION

The PMC supports an EPROM based program buffer initialization. This
initialization will take place on a power-up or n* software reset, and result
in copying the contents of the EPROM to the Program Buffer (non-volatile RAM).

A 2764 may be placed in the U46 chip site. 1If the PMC finds that the 1lst 8
bytes of the EPROM are the seven-bit ASCII Codes for "@PROGRAM" (not including
the quotes) then the contents of the EPROM will be copied to the program
buffer. This copying will start at the beginning, including the @PROGRAM
label, and end when either a Off; is found in the EPROM, or 1940 bytes have
been copied.

Note that any data in the program buffer before the transfer will be
overwritten. Also note that the string @PROGRAM must be in all capital letters
and must begin at address 0 of the EPROM, with the first eight bytes of data as
follows:

Address 00 01 02 03 04 05 06 07
EPROM Contents (hex) 40 50 52 4F 47 52 41 4D

When the copying process is complete the automatic powerup routine will
execute, if present.

ADVANCED PMC OPERATION

6.1 MACHINE I/0 OPERATION

There are a total of 16 general purpose inputs IN15' through INOO'. The top 8
bits (IN15'-INO8') are used only by the SI-System Inputs command. Machine
inputs INO7'-INOO’ can be accessed by System Input command as well as used to
direct program flow conditionally wusing the conditional Branch (Go To),
Function (Subroutine) Call, and Exit (Return) statements. In addition, program
execution can be caused to wait for machine inputs using the Until command.

An example of the use of input conditions is the U6:7 command, which will cause
the MPL program to disregard inputs INO7' through INO3’, but wait "until" INO2’
and INOl' are both asserted and INOO’ is unasserted.

Sixteen general purpose Machine Outputs are provided which may be controlled by
the Output command in MPL.

6.2 USE OF GENERAL PURPOSE I/O SIGNALS

The PMC-960's sixteen digital inputs and sixteen digital outputs can be used by
the MPL program and/or a host computer controlling the PMC-960. The default
configuration of these I/0 points is: all sixteen outputs are controlled by
the Output command, all sixteen inputs can be read by the SI command, and the
lower 8 input bits (INO7' to INOO‘) can be used in the F,B,U,E commands.

A bit in the parameter table allows the user to redefine two of the inputs,

INO7' and INQO6', as travel 1limit switches in the + and - direction
respectively. When this configuration is chosen, travel in the + direction

PMCS60f -36- ORMEC

6.2 ADVANCED PMC OPERATION

will be stopped (fast deceleration) when the INO7' signal is asserted.
Likewise in the other direction.

Another common use of the general purpose I1/0 is to define some of the output
bits to be "bank select bits"™ which external hardware uses to chose a bank of
information to be sent to the input signals. This is useful to expand the
amount of I/0O points but still maintain a reasonable interconnection count.
Also expansion can be application dependent without the use of special firmware
to handle additional I/0 points.

A typical configuration might be to assign OUT13’ and OUT12' as signals to
select one of 4 banks of eight signals which would be applied to the IN15°’
through INO8' lines. The reason to use the upper byte of input bits is that
the information coming through the banking scheme is usually informational only
and are generally not used in the MPL program control (B, U, etc.) The bank
select method of expanding the number of input signals can also be applied to
output signals if the external hardware consists of latches that would be
strobed by another output bit.

PMC960£ -37- ORMEC

2.0 MPL OPERATION

MPI. OPERATION

7.0 MPL COMMAND DESCRIPTION

Throughout this section, the following symbols are used:

< > - designates a required variable
- the enclosed item (or items) may be repeated multiple times
[] - the enclosed item (or items) are optional

| - designates the OR operator

Whenever motion parameters are referred to in this section, they will be shown
in the default units. Velocity will be shown in RPM; acceleration will be
shown in RPM/sec; position distances will be shown in position transducer
increments. The default assumption for position resolution is 4096 counts per
revolution. The unit system may be changed by the user and is designed to be
user-friendly, but causes additional processor overhead. This overhead can be
reduced by choocsing integer units consistent with internal workings of the PMC.

7.1 @ - LABEL MOTION CONTROL PROGRAMS

Purpose: establish a single-letter program label in the program buffer
Syntax: @ <label> <text> <cr>

<label> a single byte program label. (See Section 7.1.1)

<text> ‘ any number of printable ASCIT characters; If the label is not

present, it is recommended that the first character be a period
(.) so that extra program labels are not created.

Example: @.This_is_a comment_line
@X_Comment_after_a_program_ label_ 'X’

PMCS60f -38- ORMEC

7.1 MPL OPERATION

7.1.1 MPL Program Label Support

The standard MPL program command supports only the printable ASCII characrters
(" 223 - lower case z 7Ay;) as program labels. However, using the binary
programming mode it is possible to use some additional non-printing labels.
The following list contains all the labels which can be placed in the program
buffer using the binary program mode and which will be supported by the other
MPL commands.

All 256 8 bit ASCII codes with the following exceptions:

004 (NUL)
09, (TAB)
0ay (LF)
0dy (CR)
lb, (ESC)

1dy ("D
ff; (DEL)

Care should be taken when using non-printing characters. Display problems may
result on some terminals. Also, care should be exercised when using the ? and
! and { and } labels. They can be input using the binary program mode but can
not be reached using the Program command and may be misleading to some users.

7.2 A - ACCELERATION COMMAND

Purpose: Set or examine acceleration rate
Syntax: A <rate> <cr> | A <display>
<rate> integer specifying the acceleration rate in user defined unics
<display> ! display current system acceleration rate (zerc if at rest
or top speed)
? display last entered acceleration rate

% [<time>]<cr> repeatedly display the current acceleration rate
{(A! output) until an S5CI character is received,.
<time> is the rate in msec at which the % output
is repeated. (defaulr: 100)

Examples: A3500<cr> set acceleration rate to 3500 RPM/sec
A? display last entered acceleration rate
Al display current system acceleration rate

PMC960f -39- QOPMEC

7.3

MPL OPERATION

7.3 B - BRANCH (GO TO) COMMAND

Purpose:

Syntax:

<label>

<hex>

<mask>

Example:

PMCS60f

transfer MPL program execution to a program label
B <label> [<hex>[:<mask>]] <cr>

a single byte program label; (See Section 7.1.1) 1If a vertical
bar (7C4) is used, the Branch command will cause MPL to continue
execution at the 1label specified by the branch vector 1label
parameter (TLB) in the parameter table.

a hexadecimal number that is matched with the wvalues of
corresponding machine input bits; the hex number defines the
input condition necessary for a branch to occur. A bit set to 1
defines an active signal level; a bit set to 0 defines an
inactive signal level.

a hexadecimal number that specifies which machine input bits are
to be compared and which are to be ignored. (Default is FFH)
Mask bits that are set to 1 cause corresponding machine input
bits to be compared to the <hex> parameter; Mask bits that are
set to 0 cause the corresponding machine input bits to be
ignored.

BQ<cr> unconditional branch to label Q

BQl:1l<cr> branch to program label Q if input INOO' is low,
no other bits are checked

BQ10:FO<Ler> branch to label Q if INO4' is low and INO7'-INOS'
is high. INO3'-INOO‘ are ignored.

-40- ORMEC

7.4

MPL OPERATION

7.4 C - CAM COMMAND

Purpose:

Syntax:

<sign>

<position>

<speed>

<cr>

CAUTION:

Examples:

PMCS60f

perform distance-based changes of speed

C [<sign>] <position> [:<speed>] <cr>
C [<sign>] <position> [:<speed>] "
CA

+ specify positive absolute <position>.
- specify negative absolute <position>.

an integer in user defined units specifying a point in motion
relative to the absolute origin. The system attempts to reach
the new <speed> by the time this <position> is attained.

an integer in user defined units specifying new camming speed to
be reached by specified <position>

causes this Cam profile segment to be executed

synchronization character which waits for the end of a cam
segment before executing the next command

To reverse direction using the Cam command, a zero speed
position must be specified,

C1000:100 Cam to position 1000 counts in the forward
direction reaching a velocity of 100 RPM by the
end of the cam segment

c2000" Cam to position 2000 counts in the forward
direction using the previously selected camming
speed; the " waits for the last cam segment to
be completed before executing this command

-41- ORMEC

7.5

MPL OPERATION

7.5 D - DWELL COMMAND

urpose:

Syntax:

<time>

<sync>

Note:

Example:

delay a specified time interval before executing the mnext
command

D [<time>] [<sync>] <cr>

integer (0 to 65,535) in milliseconds specifying the amount of
time to be delayed before executing the next command; The
resolution of the internal timer is 4 msec and due to the asyn-
chronous nature of the dwell command there is an uncertainty of
4 msec. e.g. Since <time> is "rounded up" a Dl command will
delay 4 to 8 msec. A DO command delays less than 1 msec.

' synchronizing character which causes the PMC-960 to wait
for the system motion to stop

; synchronizing character which causes the PMC-960 to wait
for the system motion to reach a constant speed or for
motion to stop

An ESCAPE entered during the execution of this command will end
this command with a #DO error.

Dlé<cr> delay for 16 msec
D24 ,<cr> delay for 24 msec beginning after motion stops
D300 ;<cr> delay 300 msec after reaching steady state speed

7.6 E - EXIT (RETURN) COMMAND

Purpose:
Syntax:

<hex>

<mask>

Note:

.Example :

PMCO960fE

return from subroutine to statement after function call
E [<hex>[:<mask>]] <er>

a hexadecimal number that is matched with the wvalues of
corresponding machine input bits; the hex number defines the
input condition necessary for an exit (return) to occur. A bit
set to 1 defines an active signal level; a bit set to O defines
an inactive signal level.

a hexadecimal number that specifies which machine input bits are
to be compared and which are to be ignored. (Default is FFH)
Mask bits that are set to 1 cause corresponding machine input
bits to be compared to the <hex> parameter; Mask bits that are
set to 0 cause the corresponding machine input bits to be
ignored.

This command is valid only in program meode.

E<er> unconditional (return) exit
E8:8<cr> exit (return) if input INO3’ is low
-42- ORMEC

7.7 MPL OPERATION

7.7 F - FUNCTION COMMAND

Purpose: conditional call to a subroutine

Syntax: F <label> [<hex>[:<mask>]] <cr>

<label> a single byte program label; (See Section 7.1.1)

<hex> a hexadecimal number that is matched with the values of
corresponding machine input bits; the hex number defines the
input condition necessary for a function call to occur. A bit

set to 1 defines an active signal level; a bit set to 0 defines
an inactive signal level.

<mask> a hexadecimal number that specifies which machine input bits are
to be compared and which are to be ignored. (Default is FFH)
Mask bits that are set te 1 cause corresponding machine input
bits to be compared to the <hex> parameter; Mask bits that are
set to 0 cause the corresponding machine input bits to be
ignored.

Example: FA<cr> unconditional call of routine 'A’

PMCO60FE -43- ORMEC

7.8

MPL CPERATION

7.8 G - GO COMMAND

.‘urpos e:

Syntax:

<positiorn>

<sign>

<sync>

<display>

<cr>

Example:

PMCY60f

move to the specified absolute position of the system
G <position> [<sync>] <sign> <er> | G <display>

an integer in user defined units specifying the absolute posi-
tion of the system (default: Q)

+ specify positive sign and perform motion calculations
(system must be at rest before this character is entered)

- specify negative sign and perform motion calculations
(system must be at rest before this character is entered)

. synchronizing character which causes the PMC-960 to wait
for the system motion to stop

; synchronizing character which causes the PMC-960 to wait
for the system motion to reach a constant speed or for
motion to stop

! display the current absolute positiom of the system. This
is the commanded position adjusted by the current position

error.
? display the currently commanded absolute position of the
system

* stop system motion

% [<time>)<cr> repeatedly display the current position (G!
output) until an SCI character is received.
<time> is the rate in msec at which the % output
is repeated. (default: 100)

& display absolute position when last error occurred

move to the specified absolute position <position> using the
motion parameters in the motion buffer. The direction of travel
is determined by the current absolute position and the new
commanded position.

G! display the present absolute position of the
system

Gi+<er> go to the absolute zero position of the system

Gs<cr> display current absolute position every 100 msec.

-44 - ORMEC

7.9

MPL OPERATICHN

7.9 H - HOME COMMAND

7.9.1 Home Command Using Resolver Feedback

Purpose:
Syntax:

<location>

<direction>

<sync>

<display>

Note:

Examples:

PMCS60f

move to the specified resolver position or sensor
H {<location>] [<sync>} [<direction>] <cr> | H <display>

number in resolver counts which is the destination of the Home
command around the revolution of the motor. This number is
limited by the counts per revolution specified by the THA
parameter.

+ move at the homing speed in the positive direction until
the <location> 1is reached or sensor 1is detected (see
EXTERNAL STOP SELECT bit in the SP command)

- move at the homing speed in the negative direction until
the <location> 1is reached or sensor 1is detected (sece
EXTERNAL STOP SELECT bit in the SP command)

* stop system motion

, synchronizing character which causes the PMC-%60 to wait
for the system motion to stop

; synchronizing character which causes the PMC-960 to wait
for the system motion to reach a constant speed or for
motion to stop

! display current resolver value

? display last entered <locatiorn>
% {<time>]<cr> repeatedly display the current resolver wvalue
until an 5C1 character is received. <time> 1is

the rate in msec at which the % output is re-
peated. (default=100)

The home speed parameter is specified by using the TUH command.

Hi5+<cr> move in the positive direection to resoclver
position 15 counts

H, -<cr> wait for system to come to rest before homing in
the negative direction

H* stop system motion

-45- ORMEC

7.9

MPL OPERATION

7.9.2 Home Command Using Encoder Feedback

Purpose:
Syntax:

<direction>

<gsync>

<display>

. Note:

Examples:

PMC960f

move to the encoder reference or sensor

H [<sync>] <directior> | H <display>

+

- 4

move at the homing speed in the positive direction until
the encoder reference or sensor is detected (see EXTERNAL
STOP SELECT bit in the SP command)

move at the homing speed in the negative direction until
the encoder reference or sensor 1s detected (see EXTERNAL
STOP SELECT bit in the SP command)

stop system motion

synchronizing character which causes the PMC-960 to wait
for the system motion to stop

synchronizing character which causes the PMC-960 to wait
for the system motion to reach a constant speed or for
motion to stop

display current system speed

[<time>]<cr> repeatedly display the current system speed until

an SCI character is received. <time> is the rate
in msec at which the % output 1is repeated.
(default=100)

The home speed parameter is specified by using the TUH command.

H+

H*

move in the positive direction to the encoder reference or
Sensor

wait for system to come to rest before homing in the
negative direction

stop system motion

-46- ORMEC

7.10

MPL OPERATION

7.10 I - INDEX COMMAND

Purpose:
Syntax:

<distance>

<direction>

<sync>

<display>

Examples:

PMC960f

move a specified distance relative to the current position
I [<distance>] #<direction># [<sync>] <cr> | I <display>

an integer in wuser defined units specifying the relative
distance to move, If this distance, designated optional above,
is not specified, the system will move the distance that is
currently specified in the motion buffer.

+ move the specified relative distance in the positive
direction using the acceleration and velocity parameters in
the motion buffer

- move the specified relative distance in the negative
direction using the acceleration and velocity parameters in
the motion buffer

* stop system motion

, synchronizing character which causes the PMC-960 to wait
for the system motion to stop

: synchronizing character which causes the PMC-960 to wait
for the system motion to reach a constant speed or for
motion to stop

! display the distance remaining in the current or last index

? display the last entered index distance

$[<time>]<cr> repeatedly display the remaining distance in the
current or last index (repeating I! output) until
an SCI character is received. time> is the rate
in msec at which the % output is repeated.

1250<cr> set the index distance in the motion buffer to
250 counts

I+ index the system the previously set distance in
the positive direction

I,- wait for last motion to end; index the previously
set distance in the negative direction

I,+,-~ wait for last motion to end; index in the

positive direction; after this motion is stopped;
index in the negative direction

1! display the number of remaining counts in the
current move

1? display the previously specified relative
distance <distance>

I* stop the current index

I1%200<cr> display the number of remaining counts in the

current move. Update the display every 200 msec,.

47- ORMEC

7.11

MPL OPERATION

7.11 J - JOG COMMAND

. Purpose:

Syntax:
<speed>

<direction>

<sync>

<display>

Example:

PMCY60f

move at the specified jog speed

J [<speed>] #<directiom># [<sync>] <cr> | J <display>

an integer in user-defined units specifying the jog rate

+

!
?

jog in the positive direction at the specified speed; If
the speed is not specified, the jog speed in the motion
buffer will be used.

jog in the nepative direction at the specified speed; If
the speed is not specified, the jog speed in the motion
buffer will be used.

stop system motion; System motion can be stopped by typing
any character other than , or ; or <er> if the PMC-960 is
running and still in the middle of a2 J command.

synchronizing character which causes the PMC-960 to wait
for the system motion to stop

synchronizing character which causes the PMC-960 to wait
for the system motion to reach a constant speed or for
motion to stop

display current system speed
display last entered jog speed

$[<time>]<cr> repeatedly display the current system speed until

an SCI character is received. <time> is the rate
in msec at which the % output is repeated

The acceleration rate and jog speed can be changed while a jop
motion is in progress by entering the new values and initiating
another jog command.

J! display the current system speed

J? display last entered jog speed

J+ jog in the positive direction at previously
specified jog speed

J,- wait for the system to come to rest before
jogging in negative direction

J* stop system motion

J, ek - wait until end of last motion; jog in negative

direction; stop; jog in positive direction; stop;
continue jogging in negative direction

-48- OBRMEC

7.12 MPL OPERATION

7.12 L - LOOP COMMAND

Purpose; transfer MPL execution to a program label a number of times .
Syntax: L <label> {[<loop counter ID>] <count> <cr>
<label> a single byte program label; (See Section 7.1.1)

<loop counter ID> character X, Y or Z which specifies the loop counter to be
used. This allows loops to be mested up to 3 levels.

Zeountd a number between 0 and 65,535.

<er> causes the loop command to be executed

Note: When the loop command is used from interactive mode, the the
<count> specified replaces the <count> on the first loop command
encountered in the specified program <label>. For example, if
you have the following program:
@T
I+,
LT9
E

then executing the command LT999 <cr> from interactive mode
will execute program T 999 times, resulting in 1000 indexes
being performed. If, however, you executed the above program
using the B command, by entering BT, then you would get 10
indexes performed. Ten indexes are performed because the first
one was performed before the Loop command was encountered, and
Looping to program label T nine times therefore results in a
total of 10 indexes.

An i<cr> will reset the loop counter to 0. This feature is only
needed when you are executing a program and that program exits
from a loop before the lcop counter reaches 0. This can happen
using the following program:

@G

I+,

BW1

LG2999

@w

1,-

Lw19

The routine ‘G’ does 3000 indexes in the + direction as long as
general purpose machine input INO1' stays high. If INO1l' stays
high, then when all 3000 indexes are done the ‘W’ routine is
executed. If INO1l’ goes low, then the program branches to rou-
tine *W’', having executed less then 3000 indexes. In this case,
if the loop counter is not reset then the 'W' locp will not
function correctly.

Example: LB20<cr> loop to label 'B’ 20 times
LBX20<cr> loop to label ’'B’ 20 times using loop counter X

PMCS60£ -49- ORMEC

7.13

MPL OPERATION

7.13 N - NORMALIZE COMMAND

"urpo se:

Syntax:

<position>

<sync>

<sign>

<cr>

Note:

Example:

PMC960f

define current physical position or reset PMC-960
N [<position>] [<sync>] <sign> | N <cr>

an integer in wuser-defined wunits specifying the absolute
position of the system (default: 0)

, synchronizing character waits for the system motion to stop

; synchronizing character which causes the PMC-960 to wait
for the system motion to reach a constant speed or for
motion to stop

+ set absolute position counter to plus <position>
- set absolute position counter to minus <position>
* software reset

initiate Serial Communications Interface Autobaud sequence and
then output MPL firmware identifier when the autobaud process is

complete

The system must be at rest before <sign> can be entered.

N2000,+ wait for system motion to stop; set absolute
position counter to +2000
N* software reset
N<er> display firmware 1D
-50- ORMEC

7.14 MPL OPERATICN

7.14 0O - OUTPUT COMMAND

7.14.1 OA - Set Analog Outputs

Purpose: set general purpese analog machine outputs

Syntax: OA <value> <sign> <cr> | OA <display>

<value> a decimal value that defines the desired voltage level of the
general purpose analog output., This value can range from 0 to
2047 representing voltage outputs between 0 and 10 VDC. The

polarity of the voltage is specified by <sign>.

<sign> the sign of the analog voltage output
<display> ? display the current setting of the general purpose analog
output
! came as 7

7.14.2 OB - Set Binary Outputs

Purpose: set general purpose binary machine outputs

Syntax;: OB <hex> [:<mask>] <cr> | OB <display>

<hex> a 16 bit hexadecimal number that is matched with the wvalues of
corresponding machine output bits; the hex number defines the
output states for each bit. A bit set to 1 defines an active

{low) signal level; a bit set to 0 defines an inactive (high)
signal level.

<mask> a 15 bit hexadecimal number that specifies which machine outputs
bits are to be set. (Default is FFFF) Mask bits that are set
to 1 cause corresponding machine output bits to be set according
to the <hex> parameter; Mask bits that are set to 0 cause the
corresponding machine output bits to remain unchanged.

<display> ? display the last entered state of the general purpose
machine outputs. A four digit hexadecimal value will be
returned.
! same as ?
& display state of machine outputs when last error occurred
Example: OBC specify output pattern 000CH; This pattern

specifies that outputs OUT03' and OUTO2' are low,
and that all other outputs are high

QBRC:C all output bits remain the same except OUTO3' and
QUTO2' which are set low
OB? display the current state of the binary ocutputs

PMC960f -51- ORMEC

7.15

MPL OPERATION

7.15 P - PROGRAM COMMAND

. Purpose:

Syntax:

<program>

<text>

PMCO60E

enter, edit or examine motion programs
P <program> #<text># | P <label> #<text>#

{ initiate programming at beginning of Program Buffer; The
program buffer is the area in non-volatile RAM which
contains MPL commands.

<cr> initiate programming at the end of the Program Buffer

? display the Program Buffer from the beginning, a line at a
time; A linefeed character will display the next line in
the buffer. A backspace or delete will display the

previous line. The ASCII ESC(1BH) character will terminate
the output. No changes to the Program Buffer are allowed
in this mode.

! display the entire Program Buffer without any further input
required. An ESC will terminate this mode. No changes to
the Program Buffer are allowed in this mode.

all printing ASCII characters other than a space are entered
directly into the Program Buffer; If an illegal character is
received, it will be ignored and a BELL will sound.

a single byte program label; (See Section 7.1.1) Initiate
programming at the beginning of the program with this label.

p? display the first line of the Program Buffer and
display each additional command by entering a
linefeed character until the ESC key is entered
or the last command is displayed

P<cr> add program text at the end of the Program Buffer
until the Program Buffer is full or the
programming mode is terminated by typing an ESC.

-52- ORMEC

7.15 MPL OPERATION
7.15.1 Binary Programming Command
The binary programming command is designed for compact programming of a PMC-960

from a hest computer. It is used by enabling host computer communications by
setting upper bit of the Communications Format byte. (See THC command.)

Purpose: enter, edit or examine motion programs using binary mode

Syntax: P <program> | P <label>

<program> ? display the Program Buffer from the beginning, a line at a
time; A linefeed character will display the next line in
the buffer. A backspace or delete will display the

previous line. The ASCII ESC(1BH) character will terminate
the output. No changes to the Program Buffer are allowed
in this mode.

! display the exact contents of Program Buffer without any
further input required. An ESC will terminate this mode.

<label> specifies a specific motion control program. When it is found
the PMC-960 outputs an @. If a left squirrelly bracket ({) is

entered, programming starts at beginning of the program buffer.

Once this mode is entered only the following characters are allowed:

<1lf> move to the first character of the next line. No output.

<tab> echo current character and move to the next character.

<esc> terminate programming mode

Note: Any other character overwrites the program buffer byte at the current
position.

PMC960f -53- ORMEC

7.16

MPL OPERATION

7.16 R - CONTOUR COMMAND

. Purpose:

Syntax:

Purpose:

<distance>

<ref-distance>

<timebase>

PMCS60f

create high performance profiled motion

R <timebase> <distance>
R <ref-distance> <distance>

R <timebase> <distance>

The Contour command allows specification of a general motion-
time profile in <timebase> segments over a range from 1.33 to
341.33 msec., These linear "position vs., time" segments may be
commanded in real time by a host computer through the serial
communications interface or "Programmed" in the MPL program
buffer for later execution by the PMC.

R <ref-distance> <distance>

The Contour command also allows specification of a general
motion-motion profile in <ref-distance> increments of the motion
reference bus over a range from 256 to 65,536 motion reference
pulses, These linear "position wvs. position" segments may be
commanded in real time by a host computer through the serial
communications interface or "Programmed" in the MPL program
buffer for later execution by the PMC. This capability allows
"multi-axis contouring" capability which can be referenced to a
common "master axis controller" or to an external source of
motion information.

Number of relative encoder counts

A value from 0-9, A-H which specifies the number of relative
distance counts of the motion reference bus for the length of a
position/position segment in the Contour command.

A wvalue from 0-9, A-H which specifies the 1length of a
position/speed segment in the Contour command in certain
multiples of 1.33 ms.

This command is designed to create high performance profiled
motion which is defined and coded by a host computer. The coded
Contour profile is then either downloaded into the program
buffer or sent to the PMC via the serial communications
interface in real time. It is not practical to define Contour
data manually.

-54- ORMEC

7.17 MPL OPERATION

7.17 S - SYSTEM PARAMETER COMMANDS

The group of S - System Parameter Commands are stored in volatile memory and
aid in specifying motion parameters. Default values for these parameters are
generally stored in a power-up program which puts the PMC-960 in a known state
on power-up.

7.17.1 SB - Show last label and command count

Purpose: To display the last label passed (on @ command) and the number
of commands executed since the last @ command.

Syntax: SB <display>

<display> ? output the last label passed as a character, followed by a
space (except during binary output mode), followed by a
numeric value which is the count of the number of commands
entered since the last @ command was executed,

! same as ?

& output last label and command count at the time of the last
error.
7.17.2 SD - Specify Adaptive Depth Stopping Distance
Purpose: Specify the stopping distance to stop motion referenced to an

external sensor. See SP command to enable this feature.

Syntax: SD <depth> <cr> | SD <display>
<depth> the distance to stop the adaptive depth motion after the sensor.
This wvalue must include the deceleration distance. The

allowable range for this parameter is 3 to 65535,

<display> ? output the last entered <depth> parameter
! same as ?

Use of Adaptive Depth Control

Adaptive depth can be used on an Index motion, Cam motion or Go motion. To use
it, the adaptive dpeth select bit in the motion profile register (see SP
command) must be set. Then execute one of the motions: index some distance; go
to an absolute point; or enter a cam command to a 0 speed at any position (must
be running a cam profile before doing the cam command to a 0 speed). After the
motion reaches top velocity, it will look for a sensor input. The motion will
stop <depth> counts after sensor.

Note: (1) The sensor must not occur before the motion reaches top

velocity.
(2) <depth> > (deceleration distance + following error) is required.

PMC960£f -55- ORMEC

7.17

MPL OPERATION

7.17.3 SE - System Error (displays last error code)

Purpose:
Syntax:

<display>

displays last errer code

SE <display>

? displays error code register - a single byte in
HEX notation which reports the last error code

! same as ?

& same as ?

7.17.4 SF - System Following Error

Purpose:

Syntax:

<value>

<display>

PMCS60f

To display system following error; to allow the user to specify
a variable following error trip point that will cause motion to
stop or a Feed to Positive Stop motion to start

S5F <value> <cr> | SF <display>

the set point, 1 to 32767, which determines the position summing
junction (PSJ) overflow point. The set point is the nearest
power of 2 wvalue that 1s greater than or equal to <value>,
Powerup/reset default is 2048,

? display the last entered <value>

! displays position error register - a 16 bit value
reported according to the Communications Format
{see THC for more information) which shows system
following error

${<time>]<cr> repeatedly display the position error until an
SCI character is received. <time> is the rate in
msec at which the % cutput 1is repeated

-56- ORMEC

7.17 MPL OPERATION

7.17.5 SI - System Inputs

Purpose: set or examine general purpose inputs

Syntax: 81 [<hex>] <«display>

<hex> A single hex digit which specifies which of the muxed input
banks to display along with the non-banked inputs. This
parameter is only allowed when the THM has defined muxed input
support. If muxed input support is specified and <hex> is not

given, then last specified bank will be displayed.

<display> ? displays the machine inputs in hex notation.
same as ?
$[<time>]<cr> repeatedly display the machine inputs until an
SCI character is received. <time> is the rate in
msec at which the % output is repeated.
& display state of machine inputs when last error occurred

7.17.6 SL - Software Limits
Purpose: Specify two positional limits of travel for any motion.

Syntax: SL <name> <position> [<sign>] <cr>
SL <display>

<name> specifies which limit is to be set
F set the forward travel limit. Forward is defined as the
direction of motion resulting from a + direction command
when the direction invert bit is 0. This Forward is the
same direction of travel which the + hardware limit stops.)
R set the reverse travel limit
<position> an integer in wuser-defined units specifying the absolute

position of the limic

<sign> + set specified limit to plus <position>
- set specified limit to minus <position>
<display>
? display current limit values
! same as 7
Example:
s1£10000 set forward travel limit to 10000
slr5000- set reverse limit to position -5000
Use of Software Limits
The software limits work the same way as the hardware limits. There is an

enable/disable switch to turn their use on and off. When enabled, MPL will
stop any motion when a limit is reached and will not allow motion into a limit

PMCS60f -57- ORMEC

7.17 MPL OPERATION

to start if the 1limit is already true. Like hardware limits, if the current
position is on one limit it is possible to command motion off of that limit,

When a software 1limit is encountered during motion MPL will initiate a
deceleration at the system maximum deceleration rate (TUB wvalue). If the
motion was caused by a JOG command no error message will be output. Motion
caused by any other command will get an error message output,

There are two software limits, one for each direction of travel. Like the
hardware limits each of the software limits is associated with a specific
'hardware’ direction of travel. Consider the example;

(SLR value) (SLF value)

In this example the motion direction + moves to the right and motion direction
- moves to the left. The software limits will not allow travel to positions
greater than +10000 or less than position -5000.

Now let's set the direction invert bit (bit 4 of the THR register). This will
mean that commanded motion direction + now travels to the left and direction-
travels to the right. The software limits will treat the SLF value as limiting
the travel to the right. This means that the furthest you can travel in the-
direction is to absclute position -10000. Similarly the SLR wvalue limits
travel to the left, thus limiting + direction travel to absolute coordinate
+5000. This c¢an be understood by thinking of the SLF software limit as
defining the distance from the absolute origin which the motor can move to the
right, independent of whether a + or - motion command was used to cause the
motion. Likewise, the SLR software limit defines the maximum position to the
left of the absolute origin.

7.17.7 SM - System Mode

Purpose: set or examine the system mode
Syntax: SM <mode> <cr> | SM <display>
<mode> 0 enter IDLE Mode; In the IDLE Mode, both the position and

velocity 1loops are disabled and the Servodrive Enable
signal (SDRVEN shown in APPENDIX 8.4) is disabled. This
signal, or its complement SDRVEN', can be used to disable
the servodrive either through an output disable input
signal, provided on some servodrives, or using a solid
state relay.

1 enter VELOCITY Mode; In the VELOCITY Mode, the wvelocity
loop is enabled, as is the SDRVEN signal (for enabling the
servodrive).

2 enter POSITION Mode with PSJ Reset; In the POSITION Mode,

both loops are enabled, and the SDRVEN signal is asserted.
When POSITION Mode is entered with a S$M2 command, any error

PMCO60fL -58- ORMEC

7.17

<cr>

<display>

Note:

MPL OPERATION

count which may be present in the PS5J is cleared before
enabling the servo loops.

When an SM2 command is entered, and the system is at rest,
then the current absolute position of the system will be
adjusted by the current position error in the PFosition
Summing Junction. This adjustment will not be done if the
system is in motion or a PSJ overflow condition exists when
the SM2 command is entered.

3 enter POSITION mode without PS5SJ reset; In the POSITICHN
mode, both loops are enabled and the SDRVEN signal is
asserted. When POSITION Mode 1is entered with a SM3
command, any error count which may be present in the PSJ
will have an immediate effect on the system when the servo
loops are enabled, causing the system position to "jump" to
the position where the error count will be cancelled.
WARNING: This jump can be many revs at high speed!

set Mode as specified by <mode>

display current system mode Iinformation;
? same as !
& display system mode when last error occurred

If a PSJ overflow takes place, the PMC-960 automatically enters
IDLE Mode (with the Servodrive Enable signal (SDRVEN) disabled.
Clearing this fault condition with an SM2 command will auto-
matically clear the PSJ.

7.17.8 SN - System Normalization Error

Purpose:
Syntax:

<display>

PMC960f

display normalization error cancelled on last normalize command

SN <display>

? Displays normalization error register to report
error cancelled when the last Normalize command

was executed.
! Same as ?

-59._ ORMEC

7.17

7.17.9 SP - System Profile

. Purpose:

Syntax:

<hex>

PMCY960£

MPL OPERATION

set or examine motion profile parameters

SP <hex> | SP <display>

is a ASCITI hex byte with the following bit definitions:

Bit 7

1=
e
[
=

Bit 5

Bit 4

Bit 3

Bic 2

Bitc 1

Bit O

FEED TO POSITIVE STOP enables use of feed to
positive stop support (l=on) which allows torque
control against a positive stop. See ST command
for additional information.

ADAPTIVE DEPTH CONTROL enableg user to specify
stopping distance relative to external sensor on
Cam, Index and Go commands. (l=on) See SD
command for additional information.

EXTERNAL START causes a motion to start upon
receiving an external signal. Bit 4 will
indicate which signal will initiate motion.
EXTERNAL START SELECT specifies either the
machine sensor input signal (SENSOR) or the zero
reference to start a motion. (l=machine sensor,
O=zero reference) Bit 4 will be ignored unless
Bit 5 (EXTERNAL START) 1s set.

EXTERNAL DECEL causes deceleration to occur on
the machine sensor input (SENSOR) instead of a
calculated distance (after full speed is
attained). Ordinarily, deceleration is initiated
when the remaining distance is equal to the
acceleration distance. (l=on)

EXTERNAL STOP SELECT specifies either the machine
Sensor input signal (SENSOR) or the Zero
reference to stop motion during a home command or
an INDEX EXTEND. {1=machine sensor, O=zero
reference)

INDEX EXTEND specifies that speed should remain
at the level set by the J command during
deceleration rather than continuing to zero.
INDEX EXTEND is used in conjunction with EXTERNAL
STOP SELECT or with a machine input condition to
stop the motion. (l=on)

SHARP JOG STOP selects a sharp (immediate) stop
for jog deceleration rather than the deceleration
rate specified by the A command. (l=on)

The P Register is in the motion buffer and therefore, altering
it during a motion will only effect the next commanded mation.

-60- ORMEC

7.17

7.17.10 SS - System Snapshot

MPL OPERATION

(displays Motion Profile register)

Purpose: displays motion profile register which provides information on

system status
Syntax: S8 <display>

Motion profile

snapshot register - an 8 bit byte defined as:

Bic 7 DRVON indicates whether or not the serveodrive is
enabled. (l= drive ON)

Bit 6 FPS (Feed to Positive Stop) indicates that the
PMC is holding at a positive stop with torque
specified by the ST command.

Bic 5 Reserved

Bit 4 CAM HOLD indicates that a cam segment has not yet
been completed. (l=currently executing segment)

Bit 3 MOTION indicates whether or not the system is in
motion. (l= in motion)

Bit 2 TOP VELOCITY indicates whether or net the system
is currently at top velocity. 1= at top velocity

Bit 1 DIRECTION of the last (or current) motion, if
motion is in pregress. 1= forward

Biec O Reserved

<display> ? displays the selected status register.

! same as 7
$[<time>]<ecr>

repeatedly display the selected status register
until an SCI character is received. <time> is
the rate in msec at which the % output is re-
peated

& display snap shot register when last error occurred

PMC960f

-61- ORMEC

7.17 MPL OPERATION

7.17.11 ST - Set Torque Level at a Positive Stop

.urpose: sets the percentage of torque to be applied when a positive stop
is reached on a feed to positive stop motion
Syntax: ST <torque> <cr> | ST <display>
<torque> the percentage, in 0.1%, of torque to apply upon reaching a

positive stop. Range is 0 to 1000.

<display> ? displays the last specified torque
! same as ?

Usinpg Feed to Positive Stop

Feed to Positive Stop (FPS) is a state in which the PMC-960 is applying a
constant torque rather than using position or velocity control. The positive
stop is assumed to be a state such that there is only a small amount of motion
at a slow speed.

To use the FPS feature the following sequence must take place:
1) The FPS control bit in the motion profile register (see SP command)
must be set before the execution of the motion command which will
cause motion into the positive stop.

. 2) The SF command must be set. FPS uses the software following error

overflow to determine when the system has reached a positive stop.
During FPS, the software following error trip point signals the change
to a torque mode rather than stopping motion with an error.

3) The ST command must be set. This determines the percentage of torque
to be applied at a positive stop.

4) A motion command must be entered to command motion into the positive
stop. Any motion command that will reach the positive stop with
sufficient commanded overtravel will work. (See next item.)

5) The PMC determines that it is at the positive stop by sensing that the
following error (displayed by the SF! command) exceeds the value set
in the SF command. When the positive stop is reached -

- the commanded motion will be stopped

- the position loop and velocity loop compensators will be disabled
- the 'torque at positive stop’ will be applied.

- the SS! command shows no motion but the FPS status bit will be set

Note that in order for the positive stop to be recognized the motion
command driving into it must be commanded enough past the stop so that
the following error will rise above the threshold set in the SF
command.

6) To end the FPS state, any stop motion command should be entered (eg.
i*x, j*, g%, h¥, c¥). The PMC will then reduce the torque to 0, adjust
the current absolute position to correctly reflect the current
position, reset the PSJ, return the position loop and velocity loop
compensators to the values currently in the non-volatile table and

PMC960f -62- ORMEC

7.17 MPL OPERATION

close the position loop. Any command can then be issued to move away
from the stop or inte it again.

7) While on a positive stop it is assumed that there is little motion of
the motor. Any motion will be kept track of so long as the PSJ does
not overflow. If a limit becomes active, or if the system develops a
leading error of 2048 counts, the FPS motion will be terminated.

7.17.12 SV - System Feedrate Override (velocity)

Purpose: set or examine the feedrate override
Syntax: SV <value> <cr> | SV <display>
<value> a decimal number between 1 and 100 which is the percentage of

programmed speed the system will actually run.

<display> ? displays the selected status register.
! same as 7

7.17.13 SW - System Write Enable

Purpose: turn on/off write enable for program buffer and table values
Syntax: SW <value> <cr> | SW <display>
<value> 0 Do not allow changes to mnon-velatile RAM (P and T
commands). This is the default value on powerup,
1 Allow the T and P commands to change non-volatile RAM.

Changing the Program Buffer also depends on the state of
the Hardware Write Protect Enable (THP Command) and, if
enabled, the state of input IN3'.

<display> ? show the current setting of the W register.
! same as ?

PMCO60f -63- ORMEC

7.18 MPL OPERATION

7.18 T - TABLE MACHINE CONFIGURATION PARAMETERS

.The T commands are intended to provide flexibility in selecting machine con-
figuration parameters for a motion contrel application. These wvalues are
stored in non-volatile RAM and therefore don't need to be set each time the
motion control system is powered-up.

Note that the display characters (? and !) function differently with the T
commands than with other MPL commands. A ? is used to output the values in the
Parameter Table. A ! is used to output the values currently being used by the
PMC. These may be different from the Table Parameter values if ESTOP' was
asserted at power-up.

When in decimal output mode, the values output by executing a ? or ! with one
of the T commands will be preceeded by a <cr> <1f> and will be labelled and
output in decimal unless a particular item is more usefully displayed in
hexadecimal. When in hex output mode, all values will be output in hex with no
labels and no separators or terminators between items., There will not be a
leading <cr><1f> and no extra terminator following the list, just the wusual
prompt. When in binary output mode, all values will be output in binary with
no labels and no separators or terminators between items. There will not be a
leading <cr><1f> and no extra terminator following the list, just the prompt.

7.18.1 TF - Display Automatic Feedforward Gain Settings

Purpose: display the feedforward gain values which will be used when the
. velocity range has been changed
Syntax: TF <display>
<display> ? display feedforward gains for all wvelocity ranges as
calculated when the TGF was executed
! same as 7 .

Qutput format will be:

48=<gainiB8> 192=<gainl92> 38B4=<gain384> Ext=<gainExt>

<gain48> feedforward gain value used in 48 kHz velocity range
<gainl92> feedforward gain value used in 192 kHz velocity range
<gain384> feedforward gain value used in 384 kHz velocity range
<gainExt> feedforward gain value used in Slave (External) mode

PMC960f ~-64- ORMEC

7.18

MPL OPERATICN

7.18.2 TG - Table Gain Values

Purpose:

Syntax:

<register>

<value>

<sign>

<cr>

<display>

Note:

Examples:

PMC960f

specify current machine gain and compensation configuration by
setting values in the parameter table

TG #<register> [<value>] #<sign>##cr> | TG <display>

select velocity loop (tach) compensation
select position loop (error) compensation
select feedforward gain

select analog lock gain

select position loop gain

select tach gain

select velocity loop gain

select external velocity reference gain

o<W

indicates a value to use in the specified operation; This can
be an absolute value to be used for a gain or compensation, or
an incremental amount to add to or subtract from the currently
specified wvalue. The difference is specified by the <sign>.
The compensation values are entered as hex arguments unless in
binary input communications format.

+ increment selected item by <value>
- decrement selected item by <value>
Note: For + and - , the <value> defaults to 1 if not specified.

set selected item to <value> and terminate command

? display values set by user in Parameter Table which defines
current gains and compensators
! same as ?

When the feedforward gain is set in one velocity range, MPL will
automatically calculate the gain for the other velocity ranges.
When the user changes velocity ranges, the feedforward gain will
be automatically changed. The TF command can be used to display
the automatically calculated values.

TGP1l7 <cr> Set position gain to 17.

TGV34 <cr> Set velocity gain to 34.

TGP++V5-- <cr> Increment position gain by 2 and decrement
velocity gain by 10.

TGEO <cr> Set position loop for proportional gain only.
TGB4 <cr> Set velocity 1loop for integral + proportional
gain.

-65- ORMEC

7.18 MPL OPERATION

.7.,18.3 TH - Table Hardware Configuration

The TH commands documented in this section provide a convenient method for
selecting a machine hardware configuration for a specific motion control
appliecation. The Parameter Table which contains the default machine
configuration is stored in non-volatile RAM and can only be changed when the
protection bit (SW) has been set to allow non-volatile modification.

The general syntax for the TH command is as follows:

Syntax: TH <parameter> <value> <cr> | TH <display>
<parameter> A select counts/revolution of motor

B select baud rate

C select communications mode

I select axis ID

L select enable/disable of machine limits

M select enable/disable of mux'ed Input support

P select enable/disable of program buffer and table values
protection. When enabled, IN5' must be true to edit the
program buffer or change a table value.

select motion reference configuration

Enable Software Limit Control

[I

.More detailed syntax is provided for each of these commands below,

7.18.3a THA - Specify Absolute Counts/Revolution

Purpose: specify number of absolute position counts per revelution in
machine parameter table. This number is used to determine the
resolver resolution and to limit the wvalue entered on the H
command. This number should normally be a power of 2.

Syntax: THA <value> <cr> | TH <display>

<value> a number between 4096 and 65535; specifying a 0 value indicates
that an encoder is being used rather than a resolver

<display> ? display value set by user
! display value currently used

PMCO960f -66- ORMEC

7.18 MPL OPERATION
7.18.3b THB - Specify Baud Rate

Purpose: specify baud rate in machine parameter table

Syntax: THB <value> <cr> | TH <display>

<value> a number 0 thru 8:

0 auto baud on powerup
1 38400 baud

2 19200 baud

3 9600 baud

4 4800 baud

5 2400 baud

6 1200 baud

7 600 baud

B8

300 baud

<display> ? display values set by user
! display values currently used (ESTOP' Powerup changes it)

Note: The PMC's autobaud sequence automatically determines your terminal or
computer’'s baud rate. When a character is received, it is examined by the PMC
and, if it is not a wvalid carriage return, the PMC halves its baud rate. This
may be repeated up to eight times allowing baud rates from 38 .4k to 300. When
the proper number of carriage returns are sent so that the PMC’s baud rate
matches the host’s, communications is established. A time of 2.1 seconds is
allowed for the sequence of up to B tries.

PMC960f -67- ORMEC

7.18 MPL OPERATICN

7.18.3¢c THC - Specify Communications Format/Enable User Units

.Purpose: configure PMC communications & engineering units
Syntax: THC <value> <cr> | TH <display>
<value> an ASCII hex byte:
Bit 7-6 COMMUNICATIONS FORMAT, defines the representation

of numeric parameters.
Bit 7 Bit 6

1 1 -- Binary In, Binary Out

1 0 -- Hex In, Binary Out

0 1 -- Hex In, Hex Out

0 0 -- Decimal In, Decimal Out

Bit 5 Enable Fractional Distance Support (1=0N)

Bit 4 Enable Engineering Units Support (1=0N)
Engineering Units Support causes MPL to use the
acceleration, velocity and position conversion
factors.

Bit 3 Reserved

Rit 2 Enable Program Single Step (1=0N)

Program Single Step causes MPL to wait for the @
character to be input each time a label 1is
reached during program execution.

Bit 1 Enable Program Trace Mode (1=0ON)

Program Trace causes MPL commands to be displayed
at the SCI (if active) as the program is
executed.

Rit © Disable Echo (l=disabled)

Disable echo prevents MPL from echoing commands

sent to the SCI. It does not prevent any

requested display values from being sent.
<display> ? display values set by user

! display values currently used (ESTOP’' Powerup changes it)
Binary Communications Mode
The PMC-960 supports a Binmary Input mode for computer host operation. This
mode is designed to reduce the amount of data transmission needed to input

numeric data.

When configured for the Binary Input mode (see THC command) the following
requirements exists:

. 1. All numeric values for MPL commands must be entered in binary except those
for the THC, TUA, TUP, TUS commands,

2. The syntax for numeric values in binary input mode is:

PMC960f -68- ORMEC

7.18 MPL OPERATION

<00><byte 1l><byte 2>
A leading 0O byte, (ASCII NULL), is used to distinguish a number from a
display terminater. The required number of bytes of data follow the NULL.

rhe amount of data is dependent on the MPL command being executed. The
data will be 8, 16 or 32 bits, requiring 1, 2, or 4 bytes of data
respectively. No terminator is accepted.

3. In order to send the data 1D, (ASCII ctrl }) it is necessary to send the
data twice,. This character is the serial bus and system status polling
attention character. The lst occurrence of the character will be taken as
an attention character. The 2nd occurrence will indicate that this is
valid data and not an attention character.

Example:

To set the PMC wvelocity to 888; in a Binary Input mode you would need to
send the sequence:

v<00><03><78> (a total of 4 bytes of transmission)
or Iin ASCII characters
v<NULI><ctrl-Ch<x>

To set the index distance to 7500 use the sequence:

1<00><00><00><1d><1d><4c> (total of 7 bytes sent)

| | I !

| | | +--- 00001D4C, = 7500 decimal

| | Fmmmmmm the <1d> must be repeated so
| | that it is taken as data
|
|
I

R the 2 <00>'s are because the I
command requires 32 bits of
data

R R leading NULL indicating binary
data follows

Binary Output Mode

When the PMC-960 is in a Binary Output mode most numeric data will be output in
a binary format.

When in this mode if a data byte is a 23; (ASCII # character) it will be output

twice. This is to allow a host computer to distinguish between an error
message and a data byte of 23;. If a single # is received then an error
occurred. If a double # was received then a single byte of 23, was sent.

PMC960f -69- ORMEC

7.18

MPL OPERATION

7.18.3d THI - Specify PMC Axis Identifiers

. Purpose:

Syntax:

<ID>

Syntax:

<value>

<display>

<value>

<display:>

PMCI60f

assign axis hardware identifiers
THI <ID> <cr> | TH <display>

an ASCII character greater than a SPACE (20H) and less than left
square bracket '[’'., The E Configure machine
for alternate motion
reference operation

THR <value> <er> | TH <display>
a ASCIT hex byte with the following bit definitions:

Bit 7 MASTER ENABLE causes system to become motion bus
master by supplying its motion reference pulses
to the Motion Reference Bus. (l=on)

Rit 6 SLAVE ENABLE selects the Motion Reference Bus as
the master reference for creating motion instead
of the internal crystal controlled clock. (l=on)

Bit 5 Reserved

Bit & DIRECTION INVERT transposes the meaning of + and

- in motion commands.

Bit 3-2 ACCELERATION PROFILE allows acceleration profile
types to be selected by setting bits 2&3 as
follows:

Bit 3 Bit 2 type
0 0 - linear
0 1 - s-curve (polynomial)
1 0 - parabelic
1 1 - reserved
Bit 1-0 Reserved
? display values set by user

! display values currently used (ESTOP’' Powerup changesvalue>
<cr> | TH <display>

an ASCII hex value:

0 disable Hardware Program Buffer Protection

1 enable Hardware Program Buffer Protection: When Hardware
Program Buffer Protection is enabled, then IN5’ must be
true to allow the Program Buffer to be edited. The System
Write Enable must alsoc be set using the SW1l command.

? display value set by user
! display value currently used

-70- ORMEC

7.18 MPL OPERATION

7.18.3h THR - Specify Motion Referencvalue> <cr> | TH <display>

<value> an ASCII hex value:
0 disable Hardware Program Buffer Protection
1 enable Hardware Program Buffer Protection: When Hardware

Program Buffer Protection is enabled, then IN5' must be
true to allow the Program Buffer to be edited. The System
Write Enable must also be set using the SW1 command.

<display> ? display value set by user
! display value currently used

7.18.3h THR - Specify Motion Reference Configuration

Purpose: Configure machine for alternate motion reference operation
Syntax: THR <value> <cr> | TH <display>
<value> a ASCII hex byte with the following bit definitions:

Bit 7 MASTER ENABLE causes system to become motion bus

master by supplying its motion reference pulses
to the Motion Reference Bus. (l=on)

Bit 6 SLAVE ENABLE selects the Motion Reference Bus as
the master reference for creating motion instead
of the internal crystal controlled clock. (l=en)

Bit 5 Reserved

Bit 4 DIRECTION INVERT transposes the meaning of + and
- in motion commands.

Bit 3-2 ACCELERATION PROFILE allows acceleration profile
types to be selected by setting bits 2&3 as
follows:

Bit 3 Bit 2 type
0 0 - linear
o 1 - s-curve (polynomial)
1 0 - parabolic
1 1 - reserved
Bit 1-0 Reserved
<display> ? display values set by user

! display values currently used (ESTOP' Powerup changes it)

PMC960f -71- ORMEC

7.18

7.18.3g

. Purpose:

Syntax:

<value>

<display>

MPL OPERATION

THS - Enable Software Limit Control

enable/disable the use of the software limits defined in the SL
command.

THS <value> <cr> | TH <display>

an ASCII hex value

0 disable - the software limit values set in the SL command
are not used to effect motion
1 enable - the software limit values set in the SL command

are used to effect motion

? display values set by the user
! display values currently used

7.18.4 TL - Table Label Values

Purpose:

Syntax:

. <vector>

<label>

<display>

PMC960f

Allows user to store in the parameter table specific program
<labels> to be executed on power-up, when executing a motion
control routine from the machine I/0 interface or from an MPL
branch statement.

TL <vector> <label> <cr> | TL <display>

B selects a specific <label> to be executed by the MPL Branch
command. A vertical bar (7CH) is used with the Branch
statement to specify that MPL is to select the <label>
specified in the parameter table.

P selects a specific <label> to be executed on powerup. The
PMC-960 searches the program buffer for this <label> on
power-up.

\Y selects a specific <label> to be executed when accessing a

motion control program by asserting the EXEC' input line.
A high to low transition of the EXEC' digital input signal
will start execution of the <label> selected using this
command.

a printable ASCII character representing the program buffer
label to branch to when powerup or vector execute is processed.

? display values set by user
! same as ?

-72- ORMEC

7.18 MPL OPERATION

7.18.5 TU - Table Units Configuration

The TU command set allows the system designer to define engineering units for
convenient programming of motion contrel applications. When Engineering Units
is enabled by setting Bit 4 of the THC command, MPL performs its motion
calculations using the specified unit conversion factors and parameters which
allows the system programmer to enter input values using units of their choice.
The general syntax for the TU command is as follows:

Syntax; TU <parameter> <value> <cr> | TU <display>

select acceleration units conversion factor
select maximum acceleration parameter

select home speed parameter

select position units conversion factor

select velocity (speed) units conversion factor
select maximum velocity parameter

<parameter>

<t mw e

More detailed syntax 1s provided for each of these commands
below.

7.18.5a TUA - Specify Acceleration Units Conversion Factor
Purpose: to specify an acceleration units conversion factor which allows

MPL. to convert acceleration commands specified in the user's
units to the PMC's internally used units

Syntax: TUA <value> <cr> | TU <display>
<value> a floating point value used te convert acceleration from Hz/sec
to a user defined wunit. The acceleration constant (A) is

calculated by using the following formula:
Hz/sec / <user defined unit> = (A) Acceleration Constant

<valued is expressed as an integer greater than 1 and less than 65536
with a colon inserted to specify the location of the "decimal
peint"™ if needed. (i.e.- [5:7777] specifies the acceleration
constant 5.777) The integer entered, disregarding the placement
of the colon "decimal point", must be less than 65536,

<display> ? display value set by user
! display values currently used

PMCO60E -73- ORMEC

7.18

MPL CPERATION

7.18.5b TUB - Specify Maximum Acceleration Parameter

Purpose:

Syntax:

<value>

<display>

7.18.5¢ TUH -

Purpose:

Syntax:

<value>

<display>

7.18.54 TUP

Purpose:

Syntax:

<value>

<value>

<display>

PMC960f

to specify 2 maximum machine acceleration parameter {expressed
in engineering units selected by using the TUA command) in the
Parameter Table.

TUB <value> <cx> | TU <display>

an integer which specifies the maximum acceleration rate which
can be set

? display values set by user
! display values currently used

Specify Home Speed Parameter

to specify a machine home speed parameter (expressed in
engineering units selected by using the TUV command) in the
Parameter Table.

TUH <value> <er> | TU <display>

an integer which specifies the velocity to use during a home
command

7 display values set by user
! display values currently used

Specify Position Units Conversion Factor

to specify a position units cenversion factor which allows MPL
toe convert position commands (in counts) to units defined by the
user

TUP <value> <cr> | TU <display>

a floating point integer used to convert position units from
counts to a user defined unit. The position constant (P) is
calculated by using the following formula:

counts / <user defined unit> = (P) Position Constant

is expressed as an integer greater than 1 and less than 65536
with a colon inserted to specify the lccation of the "decimal
point" if mneeded. {i.e.- [5:7777] specifies the acceleration
constant 5.777) The integer entered, disregarding the placement
of the colon "decimal point", must be less than 65536,

? display values set by user
! display values currently used

-74- ORMEC

7.18

7.18.5e

Purpose:

Syntax:

<value>

<value>

<display>

7.18.5F

Purpose:

Syntax:

<value>

<display>

PMCO60f

MPL OPERATION

TUS - Specify Velocity Units (Speed) Conversion Factor

to specify a velocity units conversion factor which allows MPL
to convert velocity commands (in Hz) to units defined by the
user

TUS <value> <cr> | TU <display>

a floating point integer used to convert velocity units from Hz
to a user defined unit. The velocity constant (V) is calculared
by using the following formula:

Hz / <user defined unit> = (V) Velocity Constant

is expressed as an integer greater than 1 and less than 63536
with a colon inserted to specify the location of the "decimal
point" if needed. (i.e.~- [5:7777] specifies the wvelocity
constant 5.777) The integer entered, disregarding the placement

of the colon "decimal point"™, must be less than 65536.

? display wvalues set by user
! display values currently used

Specify Maximum Velocity Parameter

to specify a maximum machine velocity parameter (expressed in
engineering units selected by using the TUV command) in the
Parameter Table.

TUV <value> <cr> | TU <display>

an integer which specifies the maximum velocity which can be set
for any motion

? display values set by user
! display values currently used

-75- ORMEC

7.19

MPL OPERATION

7.19 U - UNTIL COMMAND

<mask>

Note:

wait until specified condition is true
U [<hex>[:<mask>]] <cr>

a hexadecimal number that 1is matched with the wvalues of
corresponding machine input bits; the hex number defines the
input condition necessary before MPL program execution will
continue. A bit set to 1 defines an active signal level; a bit
set to 0 defines an inactive signal level.

a hexadecimal number that specifies which machine input bits are
to be compared and which are to be ignored. (Default is FFH)
Mask bits that are set to 1 cause corresponding machine input
bits to be compared to the <hex> parameter; Mask bits that are
set to 0 cause the corresponding machine input bits to be
ignored.

An ESCAPE character entered during the execution of this command
will end this command with a DO error.

7.20 V - VELOCITY COMMAND

Purpose;
Syntax:

<speed>

<display>

PMCO60F

set or examine velocity rate
V <speed> <cr> | V <display>

integer in user-defined units specifying the Index and Go
velocity,

! display current system speed

? display last entered velocity

$[<time>]<ecr> repeatedly display the current system speed until
an SCI character is received. <time> 1is the rate
in msee at which the % output is repeated

& display velocity when last error occurred

-76- ORMEC

7.21 MPL. OPERATIOCN
7.21 CREATING COMPLEX MOTION PROFILES WITH THE CONTOUR COMMAND
Overview

The contour motion command provides the user with the ability to exactly
control the motion of the motor including acceleration rates, velocities and

decelerations. The contour motion command should be thought of as running on
"ticks". The user specifies both the size of the "tick" and how far, in
feedback counts, the motor should move during each "tick". The "ticks" define

segments of motion,
External Mode Contour Motion

Operational Description: This scheme uses a host computer to control a motion
reference source and to c¢ommand each slave PMC, telling it how far to move
during each "tick", The host must provide new data each "tick", until a
terminate motion command is given. "Tick" information can be provided via the
program buffer.

A "tick" is defined as specific number of external reference counts. The
number of input counts/"tick"” is selectable by the user. This defines the tick
as a distance and not a time., Since the maximum rate on the motion reference
bus is 192 kHz a "tick" in this mode can be no less than 1.33333 msec.

Internal Mode Contour Motion

Operational Description: This scheme uses a host computer (or the PMCs program
buffer) te command each PMC, telling it how far to move during each "tick".
The host must provide new data each "tick", until a terminate motion command is
given.

A "tick" is defined in time and selectable by the user. The distance that can
be travelled in a segment is velocity range dependent as specified in the TUS

and TUV commands.

Contour Motion Command

Syntax: R <tick> <count> <cr>

where: <tick> specifies the time or distance and the direction of motion
for this "tick". The units of this wvalue are dependent on
the current velocity range. The slave bit and velocity

range determine the units.

time/tick time/tick time/tick distance/tick
<tick> (384 KkHz) (192 kHz) (48 kHz) (external mode)
1 n/a 1.3333 msec 5.333 msec 256 counts
2 1.3333 2.6667 10.667 512
3 2.6667 5.3333 21.333 1024
4 5.3333 10.6667 47 666 2048
5 10.6667 21.3333 85.333 4096
6 21,3333 42 6667 170.667 8192
7 42 . 6667 85.3333 341.333 16384
0 specifies this is the end of the contour motion

PMC960L -77- ORMEC

7.21

Comments:

MPL OPERATION

The 0 must be entered as 1 hexadecimal character with no
terminator or 1 binary byte with no terminator.

<count> number of counts to move in the next "tick". The maximum
values are dependent on <tick>. Alsc dependent on <tick>
is the number of hex digits needed to specify <count>.
Both are shown in the following table:

dipgits

]

<+ tick> <-tick> Max. wvalue # he
+255
+512
+1024
+2048
+4096
+8192
+16384

OO~ WL WM =
mmooOH W0
[B S S u:w(»ru1

H (1.33ms at top speed)

If <count> > (max. value) 1is entered an A4 error message will
result and motion will decelerate at the TUB deceleration rate.
<counit> must be entered as either 2, 3 or 4 hexadecimal characters
with no terminators as shown or 2 binary bytes with no termin-
ators. In binary mode no leading NULL character is needed before
the number. When <tick>=0 is entered no <count> can be entered.

If a <cr> is received before the proper number of hex digits are
received the <cr> will be inrerpreted as a terminator for both the
<count> value and also the R command line. An ESC character
received during the <count> will be interpreted as an abort of
this data entry and will output an A2 error and return to the MPL
prompt level,

Binary data mode is requested by using the THC command. Once a
data mode is selected for an invocation of the R command it must
be used until a <cr> is entered. (Translation: you can’t mix hex
and binary on the same line.)

Multiple segments

PMC960f

The command syntax is structured to allow for multiple segments to
be specified on each R command so as to reduce overhead and
perform the fastest possible motion. The syntax also allows for
exiting back to MPL so that all the power of MPL can be used when
desired.

-78- ORMEC

7.21

MPL OPERATION

Host Synchronization

PMC960f

No segment buffering is supported. While a segment is being
executed it is possible to enter the command, or data, for the
next segment, To synchronize the host a prompt (}) will be output
when the R command is ready to accept additional data. The R
command will be ready to accept new data when the segment just
commanded (or last commanded) is executing. While still on the
same command line a prompt will be sent to the host between each
data set. While waiting for the segment data to be used (ie.
before the prompt is sent out) the PMC will ignore all characters
sent to it except the ESC which causes an error and exits to
command level and a <cr> which exits to the command level without
an error. When leaving a R command and then entering it again, a
prompt will be output as socon as the PMC is ready for another
segment data. This will be either immediately upon entry to the
command or there will be a delay until the next segment ends.

Consider the following example profile, Each step represents a
new speed. Assume the Y axis is the speed (counts) and the X axis
is the time, then each segment is defined with an ordered pair
T.Y, .

I
A B

Starting motion is dome with a RT;Y; command, When the R 1is
entered the PMC is ready for another segment so a prompt is sent
out, Communications would look like (underlined characters are
PMC output):

RIT1Y1}

The trailing } indicates that the PMC 1is ready for another
segment. We would then send the next pair T2Y2. Once sent we
would not get back a prompt until after the motion reaches point
A, just after we go to speed Y2, Then we get the prompt back.
When entered on the same command line it would look like:

RITIY1)T2Y2}T3Y3

No prompt will be output from the T3Y3 until point B is reached.
The user can at this time enter a <cr> to return to the MPL
command level. As long as he is in the command level the
synchronizing prompt will not be output. Eventually the user will
enter another R command. When this happens he will receive a
prompt when the PMC 1s ready for additional data, which is after
point B is reached. 1If the new R command is entered after point
B, then the prompt will be output immediately. Otherwise, there
will be a delay. If each segment is entered on a separate command
line then the sequence might look like:
=IR}T1Y1}<cr> command for lst segment.
=}R}T2Y2<cr> command for segment between points A and B.
The prompt to be output after Y2 won't be
output until after point A is reached. If the

-709.- ORMEC

External

MPL OPERATION

<cr> is entered before point A is reached the
synchronizing prompt for the T2Y2 segment will
not be output. The user should thus take care
to not enter the data such that the Y2 data
and <cr> fall on different sides of point A.
(You are cutting it too close if this is a
problem.)

=1RIT3V3<cr> the 1lst prompt after the R is output when the
position is after point B, which may not be
immediately when the R command is entered.

Sensor
Suppert 1s provided for sensor start of the motion. The Y
register is used to control sensor starts. Whenever the Y

register has sensor start selected and a segment is entered from
the MPL command level (R entered) then that segment will not begin
until the sensor occurs.

If a sensor start is used on a segment within a profile (already
in motion when sensor start requested) and the sensor does not
occur exactly at the end of the current "tick"” then the PMC will
not change the hardware until the sensor occurs resulting in
motion continuing at approximately the last entered speed.

Examples: (PMC output is underlined)

=}SY30 set sensor start on

=}R}TIY1}T2Y2<cr> start motion, sensor start. Command
second segment, won't wait for sensor on
second segment.

=}5Y0 turn off sensor start

=)}R}T3¥3<cr> segment starts when previous segment ends

Contour Errors

Whenever a motion error occurs during a contour motion profile,
deceleration will occur according to the TUB parameters to the
best ability of the PMC. Be forewarned that because of the units
assumed on the TUB command and the limited speed knowledge the
deceleration rate may vary some from the desired value.

Whenever an invalid character is received while a number (hex or
binary) is expected the R command will be terminated with an error-
message and deceleration will begin at the TUB rate.

Except in the case of a sensor start segment if a segment ever
ends without new data being available, the PMC will begin a
deceleration at the TUB rate, No # error message will be output
when this happens.

Contour Limitations

PMCY60f

Execution of Contour Motion requires that command data for the n+l
segment be received before the end of the n*® segment. This data
must then be processed in real time for the interrupt routines.
Because of this overhead the Contour <tick> size is limited. When
in a HEX input mode (requiring more processing overhead than

-80- ORMEC

7.21 MPL OPERATION

binary input mode) the shortest <tick> size which can be processed
without a shortage of data error is a <tick> of 5.3333 msec,

Because there is less communications overhead and no conversion
needed for binary input mode it is believed that a binary input
mode will support faster <tick>'s, however binary input to a

contour command is not possible from the Program Buffer.

7.22 EXCEPTION HANDLING AND ERROR CODES

The PMC is designed to trap user errors and return error messages in standard
formats. When the PMC is used in the host computer environment, it is the
responsibility of the designer of the host computer software to handle these
messages. Once an error is detected; the current command and mode are termi-
nated {including programming mode} and if a host system or terminal has ini-
tialized the S5CI, an error message is sent to it. The PMC then goes into a
READY state, asserting the SREADY’ line, and sends a "prompt" to the SCI.

Error codes EO-EF are generated asynchronously relative to communications to
the PMC-960. (Asynchronous means that no output is currently expected, usually
because the PMC is at the command prompt level awaiting a new command.) When
this happens it can be a problem if a computer host is communicating with the
PMC-960. To relieve the host of monitoring for these errors some asynchronous
error handling has been added. This additional handling is in effect when the
PMC-960 is in a computer host mode. This mode is defined as having 'BINARY
OUTPUT' enabled in the THC register.

When in this mode output of an asynchronous error code will be delayed until a

prompt character, '}’', is output. The delayed error code will precede the
prompt. The error buffer will save the state of the PMC-960 at the time of the
error, not at the time of the output of the error code. If any additional

errors occur while an asynchronous error is waiting for output they will be
ignored. Only the first error will be output.

Error messages from the PMC are preceded with a number sign (#), and followed
by a two character error code. A description of these error codes follows:

7.22.1 Cam Command Specific Errors

80 The Cam command must be at top velocity to change speed.

81 A Cam change is allowed only while Cam is running.

82 When wusing the Cam command, system must be at rest before
direction of the system can be changed.

B3 The ramp for changing velocity during the Cam command is too long
for the PMC’'s internal calculations. Reduce the change Iin the

velocity; or increase the acceleration value; or make the current
velocity smaller.

B4 A new camming <position> was requested while the system was
already in motion,
85 The Cam command was given too close to the desired endpoint. The

PMC does not have time to complete the command. Either enter the
command earlier, increase the acceleration value, make the speed
change smaller or make the endpoint later.

86 The internally calculated acceleration rate generated during the
Cam command exceeds the maximum acceleration parameter. Make a

PMCI960f -81- ORMEC

7.22

87

88
89

8A

8B

MPL OPERATION

smaller change in the velocity rate or do it over a larger
distance.

A BREAK character was received while the Cam command was waiting
for the current motion to stop.

A BREAK character was received while the Cam command was waiting
for the top velocity to be reached.

A BREAK character was received while the Cam command was waiting
for the synchronization character (") to be received.

A new cam segment is waiting to be executed. Another cam segment
cannot be entered until the acceleration period begins on the
current cam segment.

A non-zero start speed must be specified for the Cam command to
operate properly.

7.22.2 Input Range Error Codes

90
91
92
93

94

95
96
97
98

89

%A

9B

9C

Value entered is out of the allowable range.

Index distance entered is out of the allowable range.

Acceleration entered is out of the allowable range.

The absolute distance entered is out of the allowable range.
Absolute distance cannot be greater than 31 bits.

Velocity rate entered when using C, H, J or V command is out of
the allowable range. This error can occur when motion is
commanded after changing velocity ranges if the stored velocity is
not valid in the new velocity range.

Value entered is not a boolean value. A O or 1 is required.

An invalid input bank has been requested.

The floating point value entered is out of the allowable range.
The specified wvelocity is too small to cause motion. After
engineering units conversion the velocity 1is below the minimum

possible for the PMC and no motion would occur. Change your
conversion factor or command a higher speed.
An overflow occurred converting position engineering units. The

selected position or distance is toco large.

Specifying an input bank is illegal when MUXED input support is
disabled. (See the THM command.) Either enable MUXED input support
and try again or try again without the bank specified.

Requested home location is greater than the specified resolver
size using the THA command.

overflow during feedforward gain entry. Automatic calculation of
gain in another velocity range has resulted in an overflow.

7.22.3 Syntax Error Codes

Al
A2
A3
Al
A5

A6
A7
A8

PMC960f

An invalid command has been used.

An invalid terminator or designator has been used.

Reserved

Reserved

Invalid address entered while executing THI command. Valid
addresses are printable ASCII characters other than the "space"
character,

Reserved

Reserved

No valid program in the optional socket.

-82- ORMEC

7.22 MPL OPERATION

A9 The requested machine code is not recognized.
AA Only one floating point designator (:) allowed per number.

7.22.4 Motion Error Codes

Bl Adaptive depth value not large enough for given motion. The SD
value must be greater than the deceleration distance plus the
following error. Reducing the speed or increasing either the
acceleration rate or SD values will help.

B2 Command not valid while system is in motion or in an FPS (Feed to
Positive Stop) state. A motion designator or programming command
was entered when the system was in motion.

B3 Motion cannot be initiated with ESTOP' asserted. Unassert ESTOP'
and try again.

B4 Adaptive depth control and Deceleration Stop not allowed on the
same motion.

B5 An ESCAPE character was received during a synchronization command.

Bé& Servodrive not enabled by the user. You must be in mode 1 or mode
2 (see SM command)} before commanding motion.

B/ Reserved

B8 Attempt to move forward with forward limit (4+LIMIT') asserted.

B9 Attempt to move in reverse with reverse limit (-LIMIT') asserted.

7.22.5 Programming Error Codes

c1 Program buffer overflow., The program buffer is full.

c2 Program label undefined. Could not find the requested label during
a search (B, L, F or P commands.)

C3 The program memory has a storage fault. The last entered program-

ming character was not saved in program buffer due to hardware
failure of the ZERO-POWER RAM.

C4 An ESCAPE character was received during program execution.

C5 Invalid label entered on command. A valid label can be any ASCII
character between ASCII " (22H) and a lower case =z (7AH)
inclusive.

Cé A Program command cannot be executed during program execution.

c7 The hardware BREAK input was detected during program execution.

C8 An invalid loop counter ID was entered. Only X, Y & Z are valid.

7.22.6 Miscellaneous Error Codes

Do An ESCAPE character was received during a Dwell command.

D1 Reserved

D2 Input coperation aborted due to ESCAPE entered.

D3 The Parameter Table and/or program buffer is write protected, so
changes cannot be made. See SW command,

D4 The velocity range requested is too large. Value entered for TUS
multiplied by the value entered for TUV must be less than 384000.

D> Break character received during Single Step wait during @ command.

D6 An ESCAPE character was received during an Until command.

D7 ESC received during contour command sync.

D8 Attempt to enter a Contour segment during a contour stop or a the

contour command did not receive new data before a segment ended.

PMCY960f -83- ORMEC

7.22 MPL OPERATION

7.22.7 System Status Errors

. EO ESTOP' line asserted while system in motion.
El PSJ (Position Summing Junction) overflow exists. Use an SMO then
SM1 or SM2 to clear the overflow condition.
E2 The servodrive was not ready (DRVRDY' not true) when enabled by
the user (SM1 or SM2 issued).
E3 A FAULT input has been detected.

PMC960f -84- ORMEC

8.0 MAINTENANCE

MAINTENANCE

8.1 DIAGNOSTICS

Each time the PMC-960 powers up or is reset using the RESET’' input signal, the
CPU performs a set of diagnostic routines. These routines include testing both
the RAM and the EPROM memory, and as these routines operate, they toggle the
two color LED on the edge of the board between the Machine I/0 and the Serial
Communications Interface connectors. This LED has the following states:

RED while RESET' is active

GREEN while the RAM test operates (about 1 sec)

RED while the EPROM test operates (about 1 sec)

toggling RED/GREEN during normal system operation; This toggling, which

looks YELLOW, is done at the 4 msec rate of the on-board
real time clock, and since the LED is driven directly by
the CPU, its continued toggling is dependent on the CPU’s
normal processing of the real time clock’s interrupts.

GREEN 1 sec

& RED 1/3 sec RAM failure
RED 1 sec

& GREEN 1/3 sec EPROM failure

8.2 PREVENTIVE

No preventive maintenance procedures are required for the PMC-960.

8.3 DEMAND

The PMC-960 1is designed modularly for simple onsite demand maintenance
consisting of convenient module replacement. Most of the integrated circuits
used for Input/Output are socketed for easy user replacement. If a problem
occurs which is beyond the socketed I/0 circuitry, the user should return the
defective module for factory repair. The PMC-960 is designed with connector
interfaces to make board replacement in the field simple and fast.

PMC960f -85- ORMEC

APPENDIX

9.1 BLOCK DIAGRAM

APPENDIX

9.1

1 z € { v i 5 3 |
L 40 1 _133ns] WP 81 11 .8 3ivd -
.__ 2zadud _ - |
EL 22 3gunm 2903] 3218
J.u%\%\ _ x.)voaa A pPIreg
_ Whlkd J6 “ HINDIEIT
weresiq qo001g -3ITLIL
———a GA96IH] _wlyvd |
AN Eeyfaydoy
dao]) swo}shHy oowmly)
4-2280Md -ZZOMH] fg S5-ZZ80Hd ¥-Z280Md | £-2280ud
Sujmvag fugmeag ‘lE-IuA Bujmrag Buymwag Euimtag
HHINEd
[T'EIFE]
nigsdng
doel Aurzolen 1tqryu) dooq
pivArogpesy 3n3 doo] uoyjrsag ictjerevan uor 180y deyosuned SuE
Vo 2euve) WU SIUaW U0} ITEusINSD RIjinSAL] SERg ace e u | JTEISH
PUOWWO) JOIOIUNC] ByHQL w189 fiaquncy Jug g Ty) #3928 v TIriy
wdwd Jajanooeg %0 HYISOI Dol Iwuseul Ieraydyaey 3510 7 tesaydiiey (s2@
ENOQUR [[@8] Y @ upoy Bopway Supoy oy s,] Sul oy wWWoy |efaag
| I | - I I O [
T4LD
wiva
) I |
Z-2Z280ud
Bujpmeag
) 137 Sjiseuteig
RIYEROI]) yesey
ae31s Aromsy
iossad0ld 9008
e10) 5888
- ' | z € | v B) [I &
|

ORMEC

-86-

PMC960f

APPENDIX

9.2 PMC-960 CORE DESIGN

9.2

ORMEC

O | ¢ _ S S . -l ? _ * 1

O T 133n3] Ear 61 11 L@ Ilva e

€ ‘_\ ZZuond _ - _ [“r-
AL g ddumn] 3aud] 3z1s
—~— e Py wimpoog ¥ preeg ..ﬁ
L 16nouban | 7 ¥INBIE3a aozia’
ubrseq #4903 - 096JU4 :IILIL ¢
n e QUIEIH] s luvy g
Ay JeTayooy
d.10) swoyEhS Dow.l 4
. a azen uzen w1z
S — s o wozuy
.l FOIHrL - w...u;:vh '
) <
[T # b sateinoise b ™
J ERERN Ak
g ast g7 o/m
>R L rr
oFn s Tﬁ! | du
u.m. i) CELY uso1 "._._w v "
— ——————————l] | g+
(ZOZBYAM) HIJANG TIM (€ ALIS $-s—sler arfE e 134 | 2SI
i Tsjor azh Taw fov atoM g i
v 9|0 e br Tay 0¥ waIHEE IoH
(¥IDLZ) JHUHHYE I TVHOD IL4A0 2 ALIS P tv | o" arrg [TL] Edv o T
o 5 g3 T rde g 3E b
e o a9y YT) saw A
9 ; S o 4L 30 r
(952022) davnud1d HWHOONd T ALIS 2 be a8 f§ e —aHcoy winipai
FTIET [oy BeY RINNTI T 5w '
SR mEs oo
ANOMIH 30 IH-ALAR 5t suus Eian e «©
Y sz]ilY vl '
v cie
v X ML N 2
1 YOI 11 b ks B
CELEL
|- i i
LTS aden
rEd -
9INIC0D30 SSI¥aaV - 1"
. s
dBECD F]
anzz) !
f S— LED I 1
N EEF T P i
. L !
erxzeedu ISHAS, [IFS1P] M
o LT] 9
A0l TS ngl
. DITHY LT ATE P I1ZHa
«ﬁ 1584 samoy H
P =] g
1 T z | € v I S I s { L | 5

PMCS60f

APPENDIX

9.3 SERIAL COMMUNICATIONS

9.3

1 | T | 3 | " | 5 L M i n | 0
AT EYEER | E4» BI N1 L8 -aLmg
E ZZaHd _ - _ a
N3y u3aune 021 3215
- .NNP‘\ ulmpoog M prae(q
__ Cavaddday PELCITED]
SuUCyITAlunwwe] ¥ | I8% ERFS NS
GBI wlyvd |
AN J21E8yDOy
da0) swayshsg oowag

kb
3 5
61 | 653 3 ¢ Tan
8t] 452 POk 2T 837135
12| Wiy 3 v e yr]
& (LT} i 38en N TFIIRM i
osur 2 yilse ellsd Loy 29
ﬂﬁ-_(_ sl 4153 313
vaSTHL Gl 151 F1 8 is 131]
] gz |A=H bl IR]
et bin] I/HTST] 1ANAS 14F 0
C 1] Alwny za v
._u.. 1 (305 €q [.
e LF § vl g vaw e |
€ axy N o. Ixg 9q SaY tZ1m.0
T IN—gy] Adwxa aq S0v
— 38 k) &4 Lag
visots TZTonn iy
. trianmg
rRirHT .-....
£4:3 !
[£4] a3 Eﬂu Zﬂﬂ "
<7 o Mm“_n Zofk 22k T
[- W IR R S
@ |on w |y wln @ |
QUITELT I
1| 6% f
v oSy 614 1
rl [}
H vis axi | I
asur H o0 ﬂ -~ N -~ “.- Lol
LA TN I R BT (]
2 FZx 25 224 % ¢ cise
Wl @ @ a o1
o Eol el s .A Nes fubld
AW PrirHY TeIW wle ol ol o3 11ZHEY HiENY
A 231 [1
1T T 1
v (27
Suressne LN

-
tyuagn; T ot
1 41ItHS w4 ne

sdER SFNS

S
1 57 ALls
[4 satosgne

sS4

1 |] T ‘ T v 3 | . T)] 8 ~

ORMEC

-88-

PMC960f

! |

APPENDIX

T3ws] ¥NF EIT hd i s 2 |)
L EE [tE] TR T
W A
ecn ._upm: anve
URL 1111} FTET] - h
. YN0 dY Q.\ t HEN 2 9
U/ eviydowy esoding (visusp YT rOSIP L
..J.A Tm .
aB9&IHd h10%d4 Y
AN teaydeyooy - 8 J "
daon Twolmhs J0Wig |
LYSTIS E . s
= elen
|-|é|w e ¥
L AT F |_H.....m. HEY FHETY
|—odHly
L CTh
nl Lnon]
€901 viny CEET] u.:.|n Tea - -
[T r CINET FJLIrUNS gy
FTT EFCES 3 E [OH] IHTFIHASNBT ggq []
1179 - O] e v
ETTTY um.sl..l z 3 m u“ Tludsnaz 'mm_v
EDP L] d M 7] 490dtt g4q 1t]
18100 (T ooy 4 d €an . T H1434 sun u
7| 0| E d LeH 4
AT A tou er i]
{ 5L ..mh.r:c b § G1 gaH] ¢a_:z~ fETHE a
Y E|]
L1z | Aaya alm; (-1 44] =—4
10 W CETTY ez Slinosan eita 2
iyvis ilad e
| 92agy] IEE L
bagy,
BT Gtuy
[t
s B I avg 0 veh -
= N tud il 1% w“n
4
d01E3 vl Iud L} Iz o
- P Evd X4 <
SatOIENS -) rud [T vz] EVI
J fs = az] Svd " 4 .m."u
€4 b avd E1TTN
A evd 13534 od
T NT T L4 anr ¥4 13S3M5
: i oghe g S ,
H STE M“u WIM CH P g za4 “_ HT 1.
¥ rS G TN “ g § 3 Ead =
H 3 (3 ELE B} Z r I d *id
14] 113 ELUE L wwt §1gd e | 384 WsOIT
H (3 5] Ltd T4 AT 3t |
| eelngd 5 81d 2 a5t] ¢4
8234 & z
se4n0d T 125] 124 sofg te] 824 °a CYL |
LErEA L 5,0 66| ¥3d b1 » 124 1alg 1o
n T T M BE] y Ti] 224 1T
LY EJld €0 4 [AT]
ubr:ﬂ SAE] rod vl mwu .m._. o
pziiu £n A L ¥ et o i YT LEY sq rav g
51310y vhoy a0 "] XL}
H 11 FRE ury o anve oL Mgy Bih
nov : e s578 *13 e L[g T3y
7} ¥iid EELL]
FIY [P - |
0V - _wr.(r 3 m w. 4 uied
WL E THLD

9 4 GENERAL PURPOSE MACHINE I/0

9.4

ORMEC

-89.

PMCY960f

APPENDIX

9.5 PULSE GENERATION ,/ INTERNAL I/0

9.5

1 | z | € | » | E] | 9 | ¢ 1 o
PR W ¥ T T LI T TR B LT T
E ZZe0ud | — = a 19)HNI1d
BOET o/ mamuny a 321s 4
h\u% ujmpoog N praeg
©_dany gy “.n& CERLIT¥ TE11inne
simpoy WIRQPeE g Ol NISEOd - JTLNL C9IHn] D7d
—— qQB96Md - aluvd EEFTEE "
AH 2eyEsyooy S1dQuD
daoy swayshs Dowag (AL EEEE] Linowid [PECTE Il
T3IRHT9A HO TLVEIHID
[ESDTTRT HO 1LLOW
[FIRTTE
...... 4
FETH —————9%
dEHE
Trid0i53 " |q
Triadind
. ::._:Gull
En
j_vl N e
i
oe a8 srgTEETY € _ .
LOY &1 [] [~ ivn] L4 I S—
bsav oL dcly sov—e 2 " 4 A2z N 30 b St 2
beavw 03 a9y aH— 1 31 nea g oy IHy o AR
yau "les os |5 i+ S et a1 X} ASNEDTA [| o
& or o b2 2|50 €dg] e ez oz 3 = >
b7au 5] 0F g€ T T 0 rd BT Jen _l y H oe ae |y B e i
: bz 4z e o 1a __}p [T Pl 72 1 &1 |
eav z[®' 4% €|%0 o4l A = b e—ies as|l 5 2
ELELINVE ¥131_ 14 P Fins Hes aslf LS
I H | * s b d 2
V8 I3Hre \F v oe gty eB20a—] ¢
T e Fiav €152 8§ zesod Lwi]l.,
selae Beesire o rons
Evil Tpu
7 24 wign E_“ml
IsH—371] 3L nsa th HOSHIS i
Iz win Eviar
5 3 QP
to €d -
zo zdfgj v H3 11 S
o 14 1inauid [FIE] i [3504 |37 |
o0 oalay HIYEdIS VIN3 T 5 (3 3 Ma X0 | =
vl2 MdpPv a8 o
Zen_ | == - =] 0d__|B
WPt T8ioHFL A P[]
oe nu :] 0d__ e |
Ly a Zrn r | $04d TE
T £
[sav - P2 €12 Vi 51504 |ZE
Sy ey as N1 neatey WELT
. os as
o clovr ar E0 edlg n
&iT gles ael ro Td|gy
&T sjoe azly -
s AL I 80 edfgy
FAFET) AHV\._IJ.. 2 WP
TGEIJHY L
|
[2)vLya
' f T | 3 | 3] s I 3 T Z 5 e

ORMEC

PMC960f

APPENDIX

9.6

POSITION & VELOCITY LOOPS

9.6 PMC-960

PR TN R T T |

S(d 11 Be ¢§

EFCT

Jseewn 31008 . _l!‘ .
#ang1Eaq T by Wy ey ’
o .::u|~_| 34 agoer] Aeed HOuL 3
#4007 Ayrooten B uotljisod ITLIL eiErcTTu 4TEN reralL [ATIN T E I 114 Tk
Q96 wldvd ME o T L33 - ER) € "
(M € T - jET [— e ason ! ha
AN J8ym8yoOYy I+ 1HY YAIHFL AR 1 - H 5 xB 1
dao)y swayshs Dol LT e T w..?, 43 - s ’ v T
9Ny " L] aLd
N y 43,7 rZEUT 1040
einitTie - bl o E §I500Y .._L.wﬁ
. r?Lw - »z 1 HIWYaL 6d
asnd T FuNa 4. _
®ISIITV Inlnﬂﬁml 3 [5inH1a
Tl .
i Gena’ S . _—
asHy A | errazera E3CTTERTY
T = o:...... e 104 i@t yap pRr13a
N = - JENY ;’ g.w,.
= I TH4
1 ausil
I
LITERL AT =
L1
T LA Mma, R | ovasez
e dres! g Gda ._u_...u._w T UEr P
T €1 ezscgw S1ritany
1} AR L
L dHOD TN 3 m\\\\114
—_ [SESaT] T HA
spsra T
L4
4 S10Ko1
7| dl8udad =
T | aLA201Y 3
CAL'TS 3
*307TH |
g, azur
[TEET M TG
ir
1 WYY B
(SIHHITd o
- 160 TSIANT ST
.H.l'uazmc Hediis
&4 [T}
[T
sizacary ratu gpnon adq] v
el Aaal jea ot §
AL z E[IIUNS ggq 7o
AeHy ry FoTERAENRT gqq rTL
L¥EAT 1 hasne .mh_vﬁl
BLSLAY raa ©
LLEITTI ais1awTn v| 420418 saary MMQ
HIvd'ld b 1) St onraine & H1434 adarg 3a%
ersTEmIM 3 3 * E <80, TR
Y JEHN dena o o
TE Taeen IETHUS OE ImMa o4 Q = -
5N aren ¢ san ¥ (Z1L)
I3 FEELLT ET ——1inasae e1qq v
z N LR 1] e
TEs]]
vt 41 £3904 [(Z1Wlv]
1 T — [3 T - T A [a - | w

ORMEC

-91-

PMC960f

APPENDIX

9.7

9.7 MISC. 1I/0 & DECOCUPLER CAPS

& _’ € _

s a | Z } El
g0 ¢ 133ns] Ex¥ &) IV te_ :a1og T —
E
3g
K, uimpool N PTawg
¥3INB15 30
14w 1ajdnoosa % 041 oflW ATL1L
L AAERY winva
AN isizeyooy
drony mwajishy Jawaqg
E T -mﬁuz...,;
e -
05 — EETTonax
[T i
n
9y I [da13ins azrer
4 uwnnm“ u\uV Tanan] 5, o8 | §islxd
x i ELl T3nx| ¥, CE |(51J3u33 -
o f ™ [aitn% [2 1 T3r43anoie 1
3 LEEYY T ver
F
<m||11 [ESLTEEE]
[
9z
¥z
——
ATy~
[63 Etd [1F] 012 &1
: B ik i i
ot
v HEsta el HEIID R RES(P L] HEaID K HERISE +[|l..m‘“?
T amavgl amarel arstel_sraval angt 1|mﬁ
»
L aEur vuﬁﬂw.uﬁlﬂuu&l sza 51 amur.Hi 3w
BSTOEENS Q1TIMG
a8 .o rE
T4 HEIID] HLATD o] HONID I wea1D] wastD V td l.mq.lm
oy’ draral anstal anstel angial avai EELT]
(a3 z€3 ara 9z3 LD [5]
: DGR Wl W Wi 8
v
HESID | HEAID I misi>e| HEeS1D T NESED Z|
angial arstal ansiel ansve] ansi
¥ [T 6€D Zr) €23 122
. . 1 3 [
IMJ I—l. I.—l l.—} ..Hl UL Ateu gIomide 4 sy
Ul deqisBoy ALY AL[¥ruwe bae OHDY Pue QNEe ILOW
WSEIT X[ABRED R SRIXDX| SPTEZDE| wvrIE| wBTED _||.—|»l_
2 usuu»hu..u« uznnl—lusnn Hu.&u Hu..ﬁ = NW
rza 1€2 €3 13 rza L] T g
TS O WP
7 le
&
E - 413 16S A
E
‘ T
HEETD L1 S Rb-) HLIID I #B2EDZ| JRZED I 30 L4
arsiel_ansral awsiel anzz | anzz ata- [
-u|._| n_ud—l a_uﬁﬁl_.uq_ﬂu_ud—q "It
atne]
4 P SHT
H
LTI
! ¢ | € | 5 Y T - I P

ORMEC

PMC960f

10.1 TECHNICAL NOTES

TECHNICAL NOTES

10.1 PMC SERIAL COMMUNICATIONS PROTOCOLS

PMC Communications Protocols
April 13, 1987

J. Barr & D. Goodwin

Abstract

This technical note describes the standards used by ORMEC's PMC product line
to communicate to other devices (ordinarily host-computers) through the Serial
Communications Interface (SCI). There are three levels of communications
protocol discussed:

1) Hardware Flow Control -- Hardware signals on the SCI to
control the transmission of characters through the
communications channel,

2) Software Handshake Character -- A character (right curved
bracket, }) that is used to synchronize the operation of the
PMC and host device, and

3) Attention Character -- A character sequence starting with the

<attn> character (Ctrl-], 1Dy) to support Multiaxis operation
and System Status Polling.

PMC960f -93- ORMEC

10.1 TECHNICAL NOTES

Hardware Flow Control

The hardware flow control protocol used by the PMC is a modification of the
RS232 standard commonly used in the industry to allow two computers to
communicate at the highest data rate with bidirectional flow control. The
RS232 standard made a poor assumption that only one direction of data flow,
from Data Terminal Equipment (DTE) to Data Communications Equipment (DCE),
needed to have flow control.

In the RS232 standard, two signals were defined to support the flow control in
one direction: RTS (Request-To-Send, pin &) is asserted TRUE by the DTE
device when it has a character to send the DCE device. The DTE device must
then wait for the CTS (Clear-To-Send, pin 5) signal to be asserted TRUE by the
DCE equipment before it could actually send that character. The character is
then sent on the TxD (Transmit Data, pin 2) signal. The RS232 standard had no
provisions for controlling the speed of transmission in the reverse direction
(DCE to DTE) along the RxD (Receive Data, pin 3) signal.

Because of the lack of a standard to control the speed of data on the RxD
signal, the industry has had to fend for itself in developing a way to support
bidirectional flow control. A variety of methods exist in the communications
world which is one of the biggest reasons why it frequently takes an engineer
to simply hook up a printer to a computer.

ORMEC implemented a commonly used modification to the RS232 standard® which
redefined the use of the RTS signal but keeps the definition of CTS the same.
The difference between this and the old RS232 standard is minimized to just
the RIS signal and all other signals are used as interpreted in the standard.
RTS becomes to the DCE device as CTS is to the DTE device and simply stated:

No sending device should send a character as long as its respective input flow
control signal is asserted FALSE.

Some UARTs, such as Intel 8251A, implement in hardware, the flow control of
the transmitted data. The implementation usually consists of holding up the
transfer of data from the Transmit Buffer to the Transmit Shift Register if
the CTS signal is asserted FALSE, and automatically moving the data when the
CTS signal goes TRUE. Other UARTs, such as National INS8250, expect the
software drivers themselves to check the incoming "Modem Status"” signal(s)
before sending a character to the UART. This character is unconditionally
transferred from the Transmit Buffer to the Transmit Shift Register by the
UART as soon as the previous character transmission is complete. Both types
of UARTs are compatible with the flow control protocol used by ORMEC.

To properly manage the flow control signal used by the sending equipment, each
device must implement a method to assert a FALSE condition when it is not
ready to receive a character, and conversely, assert a TRUE condition when it
is ready to receive a character. If the receiving device uses interrupts and
a "type-ahead" ring buffer, it is simply a software task to change the level
of the flow control signal based on the number of characters in the buffer. In
the case of the PMC, the RxRDY signal generated by the Intel 8251A directly

1 Gofton, Peter W. Mastering Serial Communications. Berkeley: Sybex,

Inc., 1986.

PMC960f -94- ORMEC

10.1 TECHNICAL NOTES

manages the flow control signal. For more information on the timing of this
hardware signal, refer to the Intel Microprocessor Peripherals Catalog.

Another way to properly manage the flow control signal using non-interrupt
driven software is to assert it TRUE only when looking for a character. That
is, if the application program is checking character input status and the UART
does not already have a character in its receive buffer, then the application
program should momentarily “strobe” the flow control signal TRUE to allow
another character to be sent, On its next input status check, the application
program goes through this process again, finding a character if one has been
fully received, or allowing the sending equipment to send one character. This
is one method used by the ORMEC ASL library on the IBM PC to communicate with
PMCs.

Software Handshake Character

The software handshake character used by PMCs is the right curved bracket (},
7Dy) and is used as a synchronizing indicater for an operator or computer
interface. The two uses for the handshake character are: 1) to indicate when
the PMC is at the command level (ready to begin a new command) and 2) to
indicate when a motion synchronizing request (signified by the characters '’
*:' etc.) has been satisfied.

In general, two methods are used by a host computer to achieve proper
communications with PMCs:

1) both the host computer and the PMCs must prevent character overrun
by using hardware flow control (see above) and,
2) whenever the host computer sends something which will generate a

handshake character response from a PMC, it must wait until the
handshake character has been received before sending any
additional characters.

Using Command Entry Handshakes

Most MPL commands are terminated by entering either a carriage return <ecr> or
a display character. (See the Operation Manual for detailed command syntax.)
Once a command is terminated, the handshake character will not be sent until
the execution is completed and the PMC is ready to begin a new command.

The amount of time between the termination of the command and the sending of
the handshake character is command dependent and can range from less than 1
msec to many milliseconds. During this time, if another character is sent to
the PMC it will remain in the hardware serial port input buffer. The hardware
flow control will change to a FALSE condition indicating to the host not to
send any more data. If the hardware flow control is ignored and yet another
character is sent to the PMC, it will overrun the previous character in the
serial port and that previous character will be lost forever. Since the lost
character was probably a PMC command letter, the most likely result is a
syntax error resulting from the character that is finally read in after the
handshake character is sent.

The best way to avoid these character overrun problems is to implement

hardware flow control and wait for the handshake character before sending
another character.

FMC960f -95- ORMEC

10.1 TECHNICAL NOTES

Please note that the handshake is a single character (the curved bracket - }).
In echo mode (THC register bit 0=0), the handshake character is preceded by 3
characters, a CR, LF, and the axis ID character. In no echo mode, only the

handshake character is sent.
Using Synchronization Character Handshake

Whenever a synchronization character is sent by the host (assuming proper
syntax) a handshake character resonse should be expected. The handshake
character will be sent by the PMC when the requested condition is met. For
example, the semicolon sync character (;) is a request to wait for the
commanded motion to reach a constant speed. A handshake character will be
returned either when the motion reaches top (or constant) velocity, or
immediately, assuming that the motion is already at a constant velocity.

Consider the case of sending the sequence "J100+;" to a PMC. Upon receipt of
the '+‘, the PMC will perform the necessary calculations and begin
accelerating to the speed of 100. The PMC will then process the ";’ causing
it to wait until the wvelocity command reaches constant speed. When the
commanded motion finally reaches the speed of 100, a handshake character (1)
will be transmitted. At this point, the host computer knows that the PMC is
commanding the desired speed and that it is ready to receive additional

instructions from the host computer.

While the PMC is processing a synchronization character it will continue to
accept serial communications. It is monitoring the input locking for an
Escape (1Byz) character to abort the wait or an Attention (<attr>, 1Dy)
character for system status polling. All characters which are not an ESC or
<attn> character will be accepted but ignored. Thus, if another command is
sent to the PMC during the wait it will be lost.

Attention Character

The PMC supports an ATTENTION CHARACTER sequence to provide two services: 1)
system status polling and 2) multi-axis bussed serial communication support.
System status polling syntax: <attn> <poll>

Multi-axis communications syntax: <attn> <id>

where: <attn> = ctrl-] (1Dy)
<poll> «~lower case alphabetic character for system
status polling.
<id> = upper case alphabetic character for axis
1D

When requesting a system status poll, the request will be executed immediately
after receiving the <poll>. This will delay whatever MPL processing was
occurring on the PMC-960. Existing motion will continue to be serviced on an
interrupt basis.

When an "<attn><id>" is received, each PMC will make an immediate decision to
determine if the <id> matches it's Axis-ID as defined in the THI command. If
there is a match, then this PMC will become a talker. This means that the RS-
422 serial drivers are turned on and the PMC begins driving the data and flow
co..trol lines. 1f there is NO match, then this PMC becomes (or remains) a
listener only and the serial drivers are turned (or remain) off. In listener

PMC960f -96- ORMEC

10.1 TECHNICAL NOTES

mode the PMC will monitor serial input but will only act on an "<attm><id>"
sequence.

Attention Character Protocol Details

1) The serial input port is run on a polled rather than an interrupt
basis and is only polled when the PMC is looking for another input
character. This poll occurs between commands and during commands
when additional characters or numbers are needed to define the
command .,

In a computer host mode, hardware flow control is necessary
because the serial port may not be polled for many milliseconds.
1f hardware flow control is not used, characters will be missed by
the PMC while it is processing a command and not polling the
serial port.

Consider this example: the command 31000+ could be followed by
the system status poll request "<attm>v* to display current
velocity. Once the '+4' is received on the index command, the PMC
firmware will begin calculating for the motion requested. During
this calculation time (which can be on the order of many milli-
seconds), the serial port is not being polled by the PMC. Because
no polling takes place during the time <attn> and ‘v’ are sent,
the 'v’' will overrun the <attn> character. The PMC firmware will
only read a ‘v’ when it gets back to poll the serial port due to
the type of USART chip used on the board. 1In this case, a syntax
error would result ('v' is not legal on an index command)} instead
of the desired system status poll.

For the previous example, the hardware flow control 1i -
Analog Lock Gain 0-255 0 -

PMCI60f -97- ORMEC

5.8

OPERATION

5.8 EDITING FUNCTIONS USED DURING PROGRAM MODE

Cursor Right

Cursor Left

Cursor Down

Changes

Insert Line

Kill Line

PMC960f

TAB (CTRL-I) or CTRL-Y moves the cursor to the right one
character at a time. Moving the cursor to the end of the line
and continuing to tab will move the cursor to the beginning of
the next line.

BACKSPACE (CTRL-H) or DELETE moves the cursor to the left one
character at a time. Moving the cursor to the beginning of
the line and continuing to backspace will move the cursor to
the beginning of the previous line.

LINEFEED moves the cursor down a line at a time.

To change a motion control program, put the cursor at the
peint to be changed and overtype the desired information.
Periods (.) may be used to overtype additional undesired char-
acters or to reserve program buffer space for additional
future commands or parameter changes.

Typing CTRL-V allows text to be inserted in the program buffer
at the point of the cursor. After a CTRL-V, all characters
typed are put into a 40 character RAM buffer until a second
CTRL-V is typed or the RAM buffer is full. At that time,
space is made in the program buffer and the characters are
written to program buffer memory. If the insert operation is a
result of the 40 character buffer being full, the insert
operation is continued after the buffer is emptied. An ESCAPE
can be used to exit from insert mode without inserting any
characters.

CTRL-K del

-98- ORMEC

