MPL-MATH

MPL MATH

Version 1.3c

Copyright (c) 1989
Ormec Systems Corp.

All rights reserved

19 Linden Park

Rochester, NY 14625

October 1989

T

ORMEC

T L S = ¥ P T— T3 L R

TABLE OF CONTENTS

GENERAL DESCRIPTION

OVERVIEW OF MPL .

COMBINING MATH WITH MPL

ELECTRONIC LINESHAFTING COMMANDS

EXTENDED I/O CAPABILITIES

HARDWARE COUNTING CAPABILITIES e e
VERSION ENHANCEMENTS TO MPL MATH « e e .

FUNDAMENTALS OF MPL MATH e b e e e a4 s e
SYNTAX EXPRESSION NOTATION e e e e e
REGISTERS —+ + + v+ v+ + v+ v+
EXPRESSIONS . . . + + +v v v 4 o o v o v o .
CONSTANTS . . . + + « v o v v v v v v v v
OPERATORS v v v & v v e v v v v v e
FUNCTIONS

USING EXPRESSIONS IN STANDARD MPL COMMANDS
USING INTEGER ARITHMETIC

MPL MATH COMMANDS . . .

COMMANDS ADDED TO MPL ,

? - Print / Display Expr6551on Command
R - Register Assignment Command

? = IF/ELSE Construct

E
RG - Gear Ratio Command .o
RI - Read Input / Get Input Status .
RJ - High Resolution Jog Command
RS - Input Scan Command
RT Read Thumbwheel Switch Input
MPL COMMANDS ENHANCED BY MPL MATH
B - Branch Command e e e e e e e e e
F - Function Command o« e e e . e oe e
MPL MATH SYSTEM STATUS POLLING FUNCTIONS

EXTENDED I/O CAPABILITIES
RA - Analog Input/Output Command
RB - Set Baud Rate .
RD - Digital Input/Output Command
RF - Flag Status Register .
RO - Extended Digital Input/Output Command
RP - PMC Talk Command
RX - External Register Read/erte Command

HARDWARE COUNTING CAPABILITIES
RC - Counter Command

MPL MATH ERROR CODES

MPL-MATH -2-

- Branch or Trap on Error / Generate Error

ORMEC

APPENDIX A: I/O DEVICE DRIVERS

DEVICE 1 MAIN SERIAL PORT TERMINAL

DEVICE 2 AUXILIARY SERIAL PORT TERMINAL C e e

DEVICE 3 - MAIN SERIAL PORT ITM-270 / ITM—-27 TERMINAL .

DEVICE 4 - AUXILIARY SERIAL PORT ITM-27C / ITM-27 TERMINAL

QUTPUT DEVICE 5 - NRO-066 NUMERIC READCUT . .
EIQO to NRC-066 Display Connections

INFUT DEVICE 5 - THUMBWHEEL SWITCHES

APPENDIX B: ASCII TABLE e e e e e e e e e e e e e e e e 63

MPL-MATH -3- ORMEC

GENERAL DESCRIPTION

MPL MATH brings a new level of power and capability to ORMEC’s Motion
Programming Language, [MPL]. It integrates powerful arithmetic and logical
functions directly into MPL’s intuitive motion commands. MPL MATH also
provides commands that handle extended DIGITAL I/0, ANALCG I/0Q, and a
variety of operator interface devices. In addition it provides internal
algorithms for precise synchronization and ratioing, to make ORMEC’s motion
contrel products ideal for electronic lineshafting applications.

OVERVIEW OF MPL

ORMEC’s Motion Programming Language is calculator like in simplicity,
providing 20 intuitive commands for commanding or specifying motion. These
commands include the A command for setting Acceleration, the V command for
setting Velocity and the I command for commanding a position Index (move
relative to the current position). Also included are commands like the N
command for Normalizing the absolute position counter, the G command for
Going to a specific absolute position, and the D command for Delaying
program execution, either as a function of time or distance. MPL commands

- include the ability to display their current settings and/or real time

information with regard to the motion of the servo.

Also included in MPL are commands for editing programs, controlling program
tlow, dealing with 16 discrete I/O points, creating complex motion
profiles, and setting up a number of operational parameters. Math has
always been a part of MPL, used internally to calculate the appropriate
motion parameters. Now math is being »rovided to the user in the form of
functional expressions, using non-volatile registers and several arithmetic
and logical operators.

COMBINING MATH WITH MPL

Users of MPL with MATE can utilize 32-bit register arithmetic directly
in MPL commands or store computed arithmetic values in any of one hundred
non-volatile registers. Arithmetic and logical functions can also be
programmed to utilize real-time motion data.

MPL MATH uses standard algebraic notation to compute values, similar to the
expressions used with a programmable calculator. Constants, registers, and

20 mathematical & logical operators, give the programmer new tools to solve
difficult control problems.

MPL-MATEH -4- ORMEC

C S N LR R M L - B T B T Ei] T R rooeed . ALt e Wm0 al

ELECTRONIC LINESHAFTING COMMANDS

MPL MATH includes two commands to enhance the capabilities of our
motion controllers in electronic lineshafting applications.

The Gear Ratioc Command provides a methed to express a gear ratio as a .
fraction of two lé-bit integers. This capability allows the user to

specify gear ratios as rational numbers (such as 1/3 or 23/67) exactly,
resulting in "zero drift" operation of electronically lineshafted servos.

The High Resclution Jog command extends the velocity resolution from twelve
bits to 28 bits, allowing specification of speed ratios to a precision

finer than 1 part in 250,000,000,

MPL MATH contains a number of commands which support CORMEC’s Extended
I/0 Module [EIO-900]. The EIO-900 daughter board provides 24 additional
digital I/O points, two 8-bit analeog inputs, one 8-bit analog output, plus
an auxilliary serial port. The combination of the EI0O-900C and MPI MATH
enables the user to interface ORMEC motion controllers to industrial
keypads, thumbwheel switches, numeric readouts, alphanumeric displays and
other operator interface devices.

The 24 digital I/O points can be used as discrete I/0, or alternatively
configured tc interface to thumbwheel switches and numeric displays. Five
thumbwheel switches can be attached to the digital I/0 (totalling up to 28
decades), or alternatively four six-digit numeric displays can be used. If
using all the I/0 points for this purpose, up to five thumbwheel switches
{totaling 18 digits) and four numeric displays can be attached at the same .
time,

The EIO-3500 also provides either one differential or two single-ended
channels of 8-bit analeog to digital (A/D) input. A single 8-bit digital to
analog output (D/A) is also included.

The RS-422/485 Serial Port on the EIO-900 provides an interface to a wide
variety of operator interface devices. MPL MATH provides software drivers
for a variety of industrial control panels, data entry controllers,
industrial keypads, and alphanumeric displays. Up to thirty-two individual
20 character by 1 line alphanumeric displays can be attached to this
device,

HARDWARE COUNTING CAPABILITIES

In conjunction with the optional Encoder Backup Compensator, EBC-900
daughter board, MPL MATH provides access to an AM-9513 LSI counter chip.
It provides five powerful, software-controlled, gated 16-bit up/down
counters which can be used for applications which demand high frequency
counting capability.

MPL-MATH -5- ORMEC

VERSICN ENHANCEMENTS TO MPL MATH

Major changes in MPL MATH from Version 1.0 to Version 1.1 are listed below:

1) The number of Registers was changed from 10 to 100.

2) The print command was enhanced to add character-mode output with a
timeout and to automatically change the default output device each time
a device is setup.

3) The RI command was enhanced to add character-mode input with a timeout
and to automatically change the default input device each time a device
is setup.

4) Additional error checking was added to the RI Command

5) The RE command was enhanced to add the ability to add a user defined
error.

6) The R? IF/ELSE structured programming construct was added to the
language.

7) The RP - PMC Talk Command was added to the language.
8) The RX - External Register Read/Write Command was added to the
language,
9) RD and RX Extended I/O Functions were added.
. 10) A number of Hardware Counter Functions were added.

11) MPL MATH Error Codes were revised to be functionally grouped.

Major changes in MPL MATH from Version 1.1 to Version 1.2 are listed below:

1) The "u" and "y" system status poll commands were added to access all
100 registers instead of just the first 10.

2) The RX - External Register Read/Write Commands was enhanced to support
all 100 registers via the "u" and "y" system status poll commands.

Major changes in MPL MATH from Version 1.2 to Version 1.3 are listed below:

1) The RS - Input Scan Command was added to the language.

MPL-MATH -6- ORMEC

FUNDAMENTALS OF MPL MATH

SYNTAX EXPRESSION NOTATION

For MPL MATH commands shown in this document, bhoth a command syntax and .
examples will be shown. Command syntax statements may be somewhat
confusing at first, however they concisely and accurately describe the
command, and once understood, provide the programmer the maximum
understanding of the flexibility of the language. The following notation
is used in syntax statements:

< > PARAMETER

Any term enclosed in brackets is an item which is a parameter in the
syntax. e.g. An allowable syntax of the print command reads
?"<text>", with an example of this command being ?"Hello"™, which
would print the text Bealle. You can see that in this case, Hello is
the parameter <text>,

REPEATABLE

Any section of the syntax enclosed in "number signs" is repeatable.
e.g. Ancther allowable syntax of the print command reads
?#<text>, #, with an example of this command being

?"Enter", "Position", which would print the text Enter Position.

[] OPTIONAL .

Any section of the syntax enclosed in square brackets is optioconal.
e.g. Another allowable syntax of the print command reads
?["<text>"], with an example of this command being ?, which would
print a blank line.

<< >> VALUE, REGISTER, or EXPRESSION

Any item enclosed in double angle braces is to be either a value, a
register, or an expression enclosed by parentheses.

For any command which is highly flexible (and therefore complex in syntax),
several syntax options will be shown, each accomplishing an example
objective., For formal presentation, a "Full Syntax™ will also be shown,
illustrating in entirety the extensive power and flexibility of these
commands.

MPL-MATH -7- ORMEC

REGISTERS

One hundred, 32-bit, general purpose, non-volatile registers are
provided for use by MPL MATH, The R command is used to assign the result
of an arithmetic or logical expression to a register. 1In addition, any
register'’s contents can be used as a value in an arithmetic or logical
expression or in an MPL command.

Each register stores 32-bit binary values, which can be interpreted as
decimal integers between =-2,147,483,648 and 2,147,483,647. They can
alternatively be interpreted as hexadecimal integers or character strings
{up to four characters).

Syntax: R<<rag>>'

where: <reg> 1is a one or two digit number from 0 to 99 representing
the register number to be used; It can be either a
constant or the result of an expression.

Examples: R3 is the designator for Register 3.
R(R80) designates the Register whose register # 1s contained in
Register 80.

EXPRESSIONS

A arithmetic or logical expression is an algebraic formula which uses
constants, registers, functions, and operators to calculate a value. The
calculated value can then be stored in a register for future use or used
directly as an argument of an MPL command. The syntax of MPL MATH
expressions is standard algebraic notation, much the same as that used on a
calculator. Operator precedence is supported (see section on Operators),
and parentheses can be used to force a set of operations to be performed
first.

Syntax: <value> [# <binary operator> <value> #]
where: <value> a register, constant, function, or another
expression (surrounded by parentheses) which

may be preceded by one or more unary operators.

<binary operator> a binary operator (see section Operators).

Examples: 1+1 value = 2
123+12/6 value = 123+(12/6) = 123+2 = 125
(123+12) /6 value = 135/6 = 22
-123+12/6 value = (-123)+(12/6) = 2-123 = -121
R3*12 value = 12 times the value in Register 3
g?/6 value = commanded absolute position divided by
6

If a Register is used to specify the register, it must be enclosed in
parentheses. See the example.

MPL-MATH -8- CRMEC

CONSTANTS

Constants are values that can be used within expressions which are
Each constant can be expressed as one of
ta types": the decimal integer, the hexadecimal integer, or the

always equal to the same number.

three "da
character

constant.

Constants within expressions have their data type determined as described
A constant’s data type is totally independent of the PMC

below.
communica

tions mode.

A decimal integer is any number that begins with a non-zero digit (1-9),
and can range from 0 to 4294967295.

A hexadecimal integer is any number that begins with a zero (0), and can

range fro

m O to OFFFFFFFF.

A character constant is usually a single character
characters) surrounded by single cuotes
character constant is the ASCII? value of the character (or characters)
e quotes. If more than one character is in quotes, the first
character represents the least significant byte of the 32-bit binary value.

within th

Special characters can be represented using the caret

().

(but can be up to four
The value returned by a

which modifies the ASCII code ¢f the following character, to create a
character", If this ASCII code is greater than 3fH (€ or above),
the ASCII code is ANDed with 1fH otherwise the ASCII code in ANDed with

2fH. The caret operator can be used to print a control character by
following it with a letter (A-Z) to represent the control character to be

"control

printed (i.e. *G prints Ctrl-G which sounds a bell).

be entered in the MPL program buffer, the tilde symbol (~) is used to
a space. Examples of special characters are:

represent

0 = <space> ~ = <space>

Examples:

R1=3141592 Register
R4=0FFFF Register
R2='A" Register
R7=041 Register

R5=7321"' Register
R6=0313233 Register

MPL-MATH

[sa WIS B & I -

AD =

assigned
assigned
assigned
assigned
assigned
assigned

Al m

the
the
the
the
the
the

value
value
value
value
value
value

A3 = ¢ A4 = $ AT

3,141,592
65,535

65

65
3,224,115
3,224,115

American Standard Code for Information Interchange. See Appendix B
for a table of ASCII codes.

-g-

(~) unary operator

Since spaces cannot

= f

ORMEC

OPERATORS

There are two types of operators available: unary and binary. Unary
operators return a value by operating on another single value. Binary
operators return a value resulting from an operation of two other values.

The following table lists and briefly describes the operators available.
Operators in the same section have the same precedence, and are evaluated
left to right. Sections are in order of decreasing precedence, which means
that operators in sections at the top of the table are performed before
operators in sections toward the end of the table.

Op Description Type
—_— —,
() expressions in parentheses are evaluated first, n/a
precedence rules apply within (<expression>)
- negate (two’s complement) unary
~ not (one’s complement) unary
[1] absolute value [<expression>] unary
-> bit number <value> -> <bit number> binary
* multiply binary
/ divide (16-bit divisor) binary
% remainder (16-bit divisor) binary
+ add binary
- subtract binary
>> shift right (logical) <value> >> <shift bits> binary
<< shift left <value> << <shift bits> binary
= equal to binary
<> not equal to binary
< less than binary
<= less than or equal to binary
> greater than binary
>= greater than or equal to binary
& logical and binary
| logical or binary
~ exclusive or binary

MPL-MATH -10- ORMEC

The divide and remainder operations will generate a range error if the
divisor is too large. The bit operator will return the value (0 or 1) of
the specified bit (0 through 31) of the first argument. The comparison
operators each return a value of -1 if the compare is TRUE, or 0 if the
compare is FALSE.

Examples: R2+R3/4 Register 3 divided by 4 plus Register 2
VI*100 current velocity multiplied by 100
R1->7 bit 7 of Register 1 (0 or 1)
'Cr='A"'+1 3
V*100<R4 =1 (true) if the last entered velocity multiplied

by 100 is less than the contents of Register 4;
otherwise 0 (false)

MPL-MATH -11- ORMEC

FUNCTIONS

Many MPL commands support the use of a <display> terminator which
causes a value associated with that command to be displayed. The MPL+MATH
commands listed below can not only be used to display a value, but can also
be used to insert that value in a numeric expression,

Standard MPL+MATH Functionsg

Syntax Value Returned

A? last entered acceleration rate for motion
al current acceleration rate for motion
AL? last entered acceleration rate for limits
AQ? last entered acceleration rate for contour motion stop
AS? last entered acceleration rate for E-stop
G? currently commanded absolute position of the system
G! absolute position of the system
H? last entered home velocity
H! current system velocity (same as V!)
I? last entered index distance
I! distance remaining in the current or last index
J? last entered jog velocity
J! current system velocity (same as V!)
M. . reserved for ECS functions
o) current state of the PMC; OUT1 through OUTS
RE? current branch/trap on error label
RE! last error code
RI? number of arguments read in most recent RI command
RI! device input status
. RJ? last entered high resolution jog rate
RJ! current high resolution jog rate
RS{!] input latch bits
SC[!] current state of the PMC; INl1 through IN80
SLF current forward travel software position limit
SLR current reverse travel software positicon limit
SM? last commanded system mode
SM! current system mode
S3[{!] current motion profile register
SX current value of Register X
5Y current value of Register ¥
SZ current value of Register 2
TCP current position loop compensation
TCV current velocity loop compensation
TE? current normalization error
TE! current position error
TF current feedforward gain
TP current position loop gain
™V current velocity loop gain
b4 current external gain
v? last entered velocity rate
V! current system velocity

Note: The question mark (?) <display> terminator is optionzl in the above

. functions.

MPL-MATH -12- ORMEC

USING EXPRESSIONS IN STANDARD MPL COMMANDS

The integration of 100 Registers with arithmetic and logical
expressions into a Programmable Motion Controller is a powerful feature®.
It allows the user to set MPL command values based on a the result of a .
numeric or logical calculations, which can be based on 1) previous results
from other commands using any of the above functions, 2) I/QO data, or 3)
the contents of one or more of the one hundred non-volatile registers.

The MPL arguments that can use expressions and registers are listed below:

<condition> <position> <speed>
<count> <rate> <time>
<distance> <select> <label> (Branch & Function only)

To use the contents of a register as an argument, use the register name
(R<reg>) in place of the number that would normally be entered. To use an
expression as an argument, the expression must be enclosed in parentheses,
and can be substituted in place ¢f the number just like a register name.

Examples: VR1 Set the velocity to the contents of Register 1;
note that parenthesis are not needed for a
register reference only. The command could
however also read V{(R1l).

J(R3/100)+ Jog in the positive direction at the velocity set
by the contents of Register 3 divided by 100.
I(IH)+ Index positively the remaining index distance.

Note that this command would complete an index
command that had been stopped for some reason.

USING INTEGER ARITHMETIC .

MPL MATH uses 32-bit integer arithmetic for speed of operation and
compatibility with the parameters and ranges used in MPL. Integer
arithmetic can readily be used to deal with applications which use
parameters which include decimal points, as well as to perform math
functions which appear to need decimal points, such as multiplying a number
by 6.67 (actually 6 %/,).

For example, you may want to enter and display position in inches with
up to three decimal places. MPL MATH supports this with input (RI) and
output (?) commands which allow specification of a "decimal format".
However, it is up to the individual writing MPL application software to
"maintain the understood decimal point" and the desired precision
throughout the arithmetic expressions.

Examples: R1*20/3 Multiply register Rl by 6 %/,.
R1*3/20 Divide register Rl by 6 ?*/,.

Note that in both cases the multiplication was done first so as not to lose
precision because the intermediate number became too small.

NOTE: Expressions and registers cannot be used in MPL commands while
the PMC communications mode is set to binary input (SZ10xxxxxx). .

Otherwise the use of expressions and registers is independent of
communications mode of the PMC.

MPL-MATH -13- ORMEC

COMMANDS

$%

ADDED TO MPL

MPL MATH adds a number of commands to MPL. These commands are used for
Operator I/0, assigning the results of a calculation to a Register, and

providing the user the ability to perform error recovery programs,.

In

addition, the Gear Ratio and High Resolution Jog commands provide advanced
electronic lineshafting capabilities,

MPL-MATH

Print / Display Expression Command ., .
Register Assignment Command

IF/ELSE Construct

Branch or Trap on Error / Generate Error
Gear Ratio Command .

Read Input / Get Input Status

High Resolution Jog Command

Input Scan Command

Read Thumbwheel Switch Input

-14-

-

15
20
21
22
24
26
33
35
37

ORMEC

? - Print / Display Expression Command

Purpose: Print to, setup, or select a "default output device"‘.

Goal 1: Setup the output device driver for one of the display devices
supported by the ? command and/or select a device as the default
output device.

Syntax; ?7@<<device>>[:<dev spec>]<cr>

where: <device> A number from 1 to 5 specifying the output device.

The default output device after powerup is device 1.

The following output devices are available:

1 Character-mode output to the serial communications
interface; (PMC connector JM2).

2° Character-mode output to the (optional) auxiliary
serial port; (EIQO connector JM3).

3° Block-mode output to an ITM-270 or ITM-27 display
panel attached to the serial communications
interface (PMC connector JM2).,

4° Block-mode output to ITM-270 or ITM-27 display
panel attached to the (optional) auxiliary serial
port (EIO connector JM3). .

5° Block-mode output to the NRO-066 Numeric Readout
attached through a parallel interface (either 8 or
10 parallel output lines) to the (optional) EIO
daughter board (EIO connector JMZ2).

Once a "default output device" is selected, it will be used by future
? commands unless a different output device is specified, or the
default is changed.

5 . : : . .
A device specifier parameter <dev spec> is required to define hardware .
characteristics for these output devices. Refer to Appendix A for a
detailed descripticn of the output devices supported by MPL MATH.

MPL-MATH -15- ORMEC

? - Print / Display Expression Command (continued)

<dev spec> A string of letters and numbers which set the
device specifications for a particular device.
. Each <device> has a unique <dev spec> syntax, as
described below:

Device 1 Syntax: (none)

Device 2 Syntax: [T<<timeout>>]

Device 3 Syntax: [<<address>>][<type>]
Device 4 Syntax: [<<address>>][<type>]
Device 5 Syntax: [<<select>>]

<timeout> A decimal number representing the transmit
time-out period in msec. If a character
can’t be sent within the allotted time=-out
period because handshaking is held up, an
I/0 time-out error will be generated. A
<timeout> of zero (default) disables the
time-out feature. The <timeout> is rounded
up to the nearest 4 millisecond interval.
Note: The input time-out (used by the RI
command) is the same as the output time-out
for output device 2.

<address> A decimal number from 1 to 63 represents
the address sent to the terminal at the
beginning of each line of printed output.

. Default = 1.

<type> A Selects the block-mode ITM-270 polling
protocol (default).
B Selects the block-mode ITM-27 polling
protocol,

<select> A number from 0 to 4 representing the
address of the NRO-066 device to be
selected. Four units (addressed 1 to 4)
can be attached to the EIO in parallel by
setting an address in each unit, with the
device driver selecting the appropriate
unit with two of the parallel output lines.
Alternatively one unit (address 0) may be
attached without requiring the use of the
address output lines. The default
<address> is 0.

Example 1: ?@4:1A Specify an ITM-270 attached to the auxiliary serial
port and configured for multi-drop address 01.

Example 2: ?2@5:0 Specify a single NRO-066 Numeric Readout attached to
the EIO parallel interface (requires 8 outputs).

. Example 3: ?@3:21B Specify an ITM-27 attached to the primary serial port
and configured for multi-drop address 21.

MPL-MATH -l6- ORMEC

? - Print / Display Expression Command (continued)

Example 4: ?@85:1 Specify an NRO-066 Numeric Readout attached to the EIO
parallel interface with address 1. Up to three
additional devices can be attached in parallel as devices .
2-4 (requires 10 cutputs).

Example 5: ?@5:4 Specify an NRO-066 Numeric Readout attached to the EIO
parallel interface with address 4., The unit must have
its address yset internally to correspond with address 4.

Goal 2: Print text and/or other data to the current default output
device.

Syntax: ? #["<text>"] [,] [<expr>[:<format>]][,]# <cr>

where: <text> A string of text to be printed; See the discussion of

character constants in the Constants Section.

<expr> A numeric expression to be printed; See the
Expressions Section.

<format>‘ A string of characters specifying the format in which
to display the result of <expr>. The syntax for
<format> are described below:

[n] [D] Print a decimal integer, right justified in a .
field with n characters. Leading zeros are
replaced by spaces. If the number is longer
then n characters, the full number is printed
with no leading space. The n is optional and
defaults to 1.

[n] .m[D] Print a fixed-point decimal integer with m
digits to the right of the decimal point, right
justified in a field with n characters.

Leading zeros are replaced by spaces. If the
number is longer then n characters, the full
number is printed with no leading space. The n
is optional and defaults to 1.

[n]X Print the least significant n digits of a
hexadecimal integer, including leading zeros.
The n is optional and defaults to 8, which is
its maximum.

If no <format> is specified, all output to Device 1 will use the
numeric format specified by the current PMC Communications Output .
Mode, decimal or hex (SZ Command, Bits 7-6). OCutput defaults to

decimal for other devices.

MPL-MATH -17- ORMEC

? - Print / Display Expression Command {continued)

(n]C Print the first n characters of a stored
character string, which may be fcour characters
maximum, The n is optional and defaults to 4,
which is its maximum.

(n]B Print a binary number of exactly n bytes. The
high order byte is sent first, followed by the
low order bytes., The n is optional and
defaults to 4, which is its maximum,.

» (comma) Separate multiple strings of text and expressions in
the same print statement. Normally, the ? command
prints a complete line of text and then advances by
printing a carriage return and linefeed. To continue
printing on the same line with the next ? command, use
a comma as the last character of the ? command.

Example 1: ?12+R1/2 Print a value equal to half of the
contents of Register 1 plus 12.

Example 2: ?"Hello.™ Print "Hello.", followed by a carriage
return and linefeed.’

Example 3: ?"Positien™,R1,"." If Register 1 contains the number 123,
this statement will print "Position
123.", followed by a carriage return and
linefeed,

Example 4: ?"Total~=~$",R3:1.2, If Register 3 contains the number 36595,
this statement will print "Total =
$365.95", with no following carriage
return and linefeed (because of the
comma) .

Example 5: ?"The~system~is",R2:c If Register 2 contains the character
string ‘~off’, this statement will print
"The system is off".

Example 6: ?""GError~"3",R4:2x If Register 4 contains 160 (00QAQ,), this
statement will sound the bell of the
serial device (if it has o¢ne), and print
"Error #A0™,.

! Using the ? command interactively with "Device 1" selected produces
confusing results when printing strings. This is because Device 1 is
also the programming console, and the command is executed
interpretively on a character by character basis.

It is convenient however, to use the ? command interactively to print
the contents of registers or expressions. To try some examples of
printing strings to the conscle, see the MPL program listed under the
RI command.
MPL-MATE -18- ORMEC

? - Print / Display Expression Command (continued)

Goal 3: Print to a device other than the current default device.
Syntax: 7@<<device>>[:<devspec>], ["<text>"] [,] [<expr>[:<format>]] [,]<cr> .

Examples: 7?@4,"Enter~Position:~"

Full Syntax for the ? Command:

Syntax 1: ?{[@<<device>>[:<devspec>],l#["<text>"][,]
[<expr>[:<format>]] [,] #<cx>
Syntax 2: ?@<<device>>[:<dev spec>]<cr>
Syntax 3: ?@? Display the current default output
device.

MPL-MATH -19- ORMEC

R ~ Register Assignment Command

Purpose: Store the results of an arithmetic or logical expression in one
. of one hundred non-volatile registers.

Syntax: R<<reg>> = <expr><cr>

where: <reg> The number (from 0 to 99) of the register to be

assigned the result of <expr>; This number can also
be the result of an expression enclosed in
parentheses. See Registers Section,

<expr> A numeric expression; See Expressions Section.

Example 1: R1=R2*45/100 Register 1 Register 2 * (.45

I

Example 2: R3=8S! Register 3 current motion profile register

Example 3: R(R80)=g! The register whose register number is contained in
Register 80 = the current absolute position.

MPL-MATH -20- ORMEC

R? - IF/ELSE Construct

Purpose:

Syntax:

where:

Example 1:

Example 2:

MPL-MATH

Provide an IF/ELSE construct for the MPL programmer. Execute a
set of commands based on a condition defined by an expression or
set of expressions.

There are actually four parts to the IF command: IF, ELSEIF,
ELSE, and ENDIF. The IF and ENDIF parts are required, and the
ELSEIF and ELSE parts are optional. The ELSEIF part can be
repeated. The IF and ELSEIF statements are followed by commands
which will be executed if the expression <expr> in that
statement is evaluated as TRUE. The commands following the ELSE
statement will be executed only if all the IF and ELSEIF
statements present are false.

IF Construct CASE Construct
R?<expr><cr> IF <expr> CASE <expr>:
#<command>#
[#R:<expr><cr>#] ELSEIF <expr> CASE <expr>:
#<command>#
[R:<cr>] ELSE DEFAULT:
#<command>#
R?<cr> ENDIF ENDCASE
<expr> A boolean expression; Program execution will continue

starting with the next command if the result of this
expression is non-zero, otherwise MPL program
execution will continue at the next R: or R? command.
If this expressisn is not included, program execution
will continue with the next command.

<command> An MPL+MATH command to be executed if the above
condition is true.

R?_R3>5 IF R3 > 5
?"Too~big.~~Setting~to~5." Print a warning message.
R3=5 Set R3 equal to 5.

R? ENDIF

R?_RE!=0Al IF last error was #Al
?"Invalid~command~error" Print the error message.
R: RE!=0A2 ELSE IF last error was #A2
?"Terminator~error" Print the error message.
R: RE!=0A4 ELSE IF last error was #A4
?"Value~out~of~range~error" Print the error message.
R: ELSE

?"Error~",RE!:2x Print the error code.

R? ENDIF

-21- ORMEC

RE - Branch or Trap on Error / Genarate Error

Purpose: Cause MPL program execution to branch (transfer operation) to
the specified label in the program buffer when a non-programming
error occurs.

Syntax 1: REB <label> Branch on errcr (many)

Syntax 2: RET <label> Trap on error (once)

Syntax 3: RE <cr> Disable branch/trap on error
Syntax 4: RE * Clear the last error code

Syntax 5: REE [<<error>>] <cr> Generate an MPL error

Syntax 6: REF <<error>> <cr> Force an error

Syntax 7: RE <display> Display last error or error label
Usage: R<<reg>> = RE[<display>] Get last error or error label
where: <label> The program marker label of the error handler where

MPL command execution will be transferred when an
errQr Qoccurs,

<cr> Clear the error <label>. All subseguent errors will
be handled normally and no branch will occur on error.

* Clear the last error code (returned by RE!) to zero.
Clearing the last error is not required for normal
error processing.

<error> A two-digit hexadecimal number representing the error
code to be generated. In the REE command, if <error>
is not specified it defaults to the last error (RE!).

<display> ? Display the current label to branch/trap to on
error.
! Display the last error code.

The REB (branch on error) and RET (trap on error) commands both install an
error handler routine to which execution will be transferred when an error
occurs. If the REB command is specified, the jump to error <label> occurs
each time a non-programming error occurs. For the RET command, only the
first non-programming error causes a Jjump. The Trap feature is
particularly useful during system startup since the REB command can lead to
an infinite lcocop if MPL errors exist.

Programming errors (#CO through #C9) and User Abort errors (#B5, #DO, #D2,
and #22) never call the error handler, even if one is installed using REB
or RET. These errors will always generate a "#<error>" message and abort
the program just like MPL would without an error handler installed. All
other errors call the error handler,

MPL-MATH -22- ORMEC

i 1 e e . e e e -l i 8 s e a T = 3 PR : e

RE - Branch or Trap on Error / Generate Error (continued)

The REE and REF commands are functionally similar, but they are used for
different purposes. The REE command is designed for use inside an error
handler. It generates a "#<error>" message and aborts the program just .
like MPL would without an error handler installed. It should be used for

all error codes that are not handled in a special way by the error handler.

The REF command is used to generate a specific error that is to be handled
like all other errors. If an error handler is installed (using REB or
RET), the REF command will call it, and RE! will reflect the error code
generated by the REF command. If no error handler is installed, the REF
command will behave like the REE command described above. This command is
useful for testing MPL error handler code, or for forcing a user-defined
error to occur during execution of an MPL program.

Example 1: REBe Branch on error to program label “e™.
Example 2: @error handler Error handler
Bv:RE!=0D9 Branch to label "v" if PSJ overflow error
Bs:RE!=0D1|RE!=0RB3 Branch to label "s" if STOP asserted error
REE Handle all other errors normally (abort)

MPL-MATH -23- ORMEC

RG_ - Gear Ratio Command

Purpose:

Syntax 1:

Syntax
Syntax

where:

Example:

MPL-MATH

2 .
3:

Set a precise speedy ratio in electronic lineshafting
applications (external mode) as the ratio of two integers.

RG [<<ingear>>[/<<outgear>>]] #<term>f#<cr> Gear ratio

RG <cr>

Disable gear ratioing

RG <display> Display gear ratio

<ingear>

<outgear>

<term>

<cr>

<display>

RG2/3+

The number of teeth on the imaginary input gear, with
a range of 1 to 65535, This value is entered into the
motion parameter buffer,

The number of teeth on the imaginary output gear, with
a range 2 to 65536; If not specified, the <outgear>
default is 10,000, allowing the user to specify the
speed ratio to a precision of hundredths of a percent.
This value is entered into the motion parameter
buffer,

Note: This command has a constraint that <ingear>
must be less than or equal to <outgear>*4095/4096. To
run the slave servomotor at a ratio of 1:1, use
310000, which causes the servomotor to run at 100.00%
of the electronic lineshaft speed.

+ Start motion in the positive direction.
- Start motion in the negative direction.
* Stop motion.

If <cr> follows <term>, the system first waits for
constant velocity to be reached, and then enables high
resolution gear ratioing. TIf <cr> immediately follows
the RG command (with no other parameters), high
resolution gear ratioing is disabled, but motion
continues at the current low resolution jog speed.

? Display the last specified gear ratio.
! Display the current gear ratio.
% Repeatedly display the actual ratio.

Accelerate to, and run at a constant speed which

is precisely two thirds of the rate of the
electronic lineshaft (motion reference bus).

-24- ORMEC

RG - Gear Ratio Command (continued)

The two integers <ingear> and <outgear> can be thought of as specifying the
number of gear teeth on imaginary "input" and "output" gears, where the

input gear is be mounted on the electronic lineshaft, and the output gear .
is mounted on the servomotor under control. Since the output gear,

specified by <outgear>, must have more teeth than the input gear, you can

see that the speed of the servomotor (in terms of encoder counts/sec) must
always be slower than the speed of the electronic lineshaft.’

Once top speed is reached, (which can be all the time for slave
servomotors) the speed of the slave servomotor will be raticed to the
electronic lineshaft by the specified ratio. e.g. 1/3 specifies that the
servomotor will run at 1/3 (in encoder counts per lineshaft count) of the
speed of the electronic lineshaft.

Notes:

1) The RG command functions the same as the Jog command during the
acceleration and deceleration segments. Motion is accelerated at the A
rate to the closest specifiable coarse speed less than that specified
by the RG command. The <cr> command terminator enables the final
acceleration step to the precisicn specified speed. This process is
reversed on deceleration. The RG command therefore has an implied
semicolon (;) wait for top speed synchronization character built in,
MPL execution is suspended until top speed is reached.

2) The RG Command changes the jog speed value stored in the Motion Buffer.

For slave servomotor speeds greater than the electronic lineshaft, the

slave servomotor must have an encoder resclution less than the

resolutiocn of the electronic lineshaft. e.g. If the motor driving the
electreonic lineshaft has 24,000 counts per revolution, the slave

servomotor has a resolution of 6,000 counts per revolution, and the

slave servomotor is commanded to run at 2/3 of the electronic .
lineshaft, its actual speed will be (24,000/6,000)*2/3 = 8/3. For

this case, when the master motor runs 300 RPM, the slave servomotor

will run 800 RPM.

MPL-MATH -25- ORMEC

RI - Read Input / Get Input Status

Purpose:

Goal 1:

Syntax:

where:

Read operator input into a Register from an operator input
device. This command allcws straight numerical input or
formatted input, including either decimal point or character
format. It also supports different types of input devices.

Setup an input device driver to read from one of the operator
interface devices supported by the RI command and/or select a
device as the "default input device"®.

RIR<<davice>>:<dav spac><cr>

<device> is a number from 1 to 5 specifying the device to be
selected as the default input device;

1 Read from the gserial communications interface (PMC
connector JMZ) using line-mcde or character-mode.

2 Read from the auxiliary serial port (EIC connector
JM3) using line-mode or character-mode.

3" Read from an ITM-270 or ITM-27 Operator Keypad
attached to the serial communications interface
(PMC connector JMZ2) using block-mode.

4" Read from an ITM-270 or ITM-27 Operator Keypad
attached to the auxiliary serial port (EIOQ,
connector JM3) using block-mode.

5'° Read from a bank of thumbwheel switches through a
parallel interface (PMC or EIQ). The RT command
is normally used for this purpose.

MPL-MATE

10

Once a "default input device" is selected, it will be used by future
RI commands unless a different device is specified or the default is
changed.

A device specifier parameter <dev spec> is required tc define hardware
characteristics for these input devices. Refer to Appendix A for a
detailed descripticn of the input devices supported by MPL MATH.

-26- ORMEC

RI - Read Input / Get Input Status (continued)

<dev spec> A string of letters and numbers which set the
device specifications for a particular device.
Each <device> has a unique <dev spec> syntax, as .
described below:

Device 1 Syntax: [<mode>] [T<timeout>]

Device 2 Syntax: [<mode>] [T<timeocut>]

Device 3 Syntax: [<<address>>] [<type>]

Device 4 Syntax: [<<address>>][<type>]

Device 5 Syntax: [<<id>><spac>]

<type> L Selects line input mode (default). All

input will be done a line at a time,
allowing editing of the line as it is
typed.

C Selects character input mode. All input
will be done on a character-by-character
basis.

<timeout> A decimal number representing the receive
character timeout period in msec. If a
character is not received within the
allotted time-out period, an I/0 time-out
error will be generated. A <timeout> of
zero (default) disables the time-out
feature. The <timeout> is rounded up to
the nearest 4 msec interval. .
Note: The input time-out is the same as
the output time-out for device 2.

<address> A decimal number from 1 to 63 represents
the address sent to the terminal at the
beginning of each line. Default = 1,

<type> A Selects the block-mode ITM-270 polling
protoccl (default).
B Selects the block-mode ITM~-27 polling

protocol.
<id> See the RT command for a description of
<id>,
<spec> See the RT command for a description of
<spec>.

MPL-MATH ~27- ORMEC

RI - Read Input / Get Input Status (continued)

Example 1:

Example 2:

Example 3:

Goal 2:

Syntax:

where:

Example:

MPL-MATH

RI@4:1A Specifies an ITM-270 attached to the auxiliary serial
port and configured for multi-drop address 01l.

RIG3:21B Specifies an ITM-27 attached to the primary serial
port and configured for multi-drop address 21.

RIG1:cTO Specifies a dumb terminal (or IBM-PC with MAX or MAX-

II) attached to the primary serial port with single
character input and no timeout.

Read a decimal number from the default operator interface
device.

RI R<reg> <cr>

<reg> A number from 0 to 99 specifies the register to
receive the input.

RIR3 Read operator input into Register 3; for entry 123,
followed by a "carriage return", Register 3 = 123,

-28— ORMEC

RI - Read Input / Get Input Status (continued)
Goal 3: Read one or more formatted input parameters from an operator
input device.
Syntax: RI #R<reg>[:<format>]<sep># <cr>
where: <reg> A number from 0 to 99 specifies the register to
receive the input.
<format>'" A string of characters specifying the format in which
to input the number. The syntax for <format> are
described below:

[n] [D] Read a decimal integer of up to n characters.

The n is optional and defaults to the longest
possible entry.
[n].m[D) Read a fixed-point decimal integer of up to n
characters, with m digits to the right of the
decimal point. The n is optional and defaults
to the longest possible entry. The integer
value returned by this function is equal to the
number entered at the terminal * 10" (see
Examples below) .
[n]1X Read a hexadecimal integer of up to n digits.
The n is optional and defaults to 8.

[n]C Read a character string of up to 4 characters.
Only the first n characters will be read. The
n is optional and defaults to 4.

Note: The n specifies the maximum number of

characters to read, including the sign and decimal

point for D format; Characters in excess of the
number n will be discarded at the completion of the

read. The size of the input line buffer is 32

characters,

<sep> A separator is used to separate register inputs in the
same read statement. The separators are as follows:

; When a comma is used, the user must type a space
or a comma to delimit values entered on the input
line. The final comma is not needed.

; When a semicolcon is used, no delimiter is expected
between input fields, and the next input field is
identified only by an invalid character in the
previous field., A semicolon must be used at the
end of a line that may not end in a carriage
return,

1 The default <format> is decimal.
MPL-MATH -29- ORMEC

RI - Read Input / Get Input Status (continued)

Example 1: RIR3:6.2D Read a formatted number of up to six
characters long, and with up to 2 decimal
places, into Register 3; for entry 123.45,
Register 3 = 12345

Example 2: RIR3:6.2D,R9:4.1D Read a formatted number of up to six total
characters long into Register 3 and a
formatted number of up to 4 characters long
into Register 4.

Note: The RI command can’t be used interactively to input a number from
the primary serial port (Device 1). To try the examples below, write an
MPL program as illustrated:

@1 _RI_Example establish program label 1

? print a blank line

?"Enter~number:~", prompt the operator for input

? print a blank line

RIR3 read input into Register 3

?"Reg~3~=~",R3 print the value of Register 3

? print a blank line

@2 establish program label 2
?"Enter~formatted~num.:~", prompt the operator

RIR3:6.2D read a formatted decimal number into Register 3
?"Reg~3=",R3,"~~" R3:6.2D print Register 3, unformatted and formatted
B2: (R3<>-1234) branch to label 2 if R3 is not equal to =-1234
Rl="z’ initialize Register 1 to z

? print a blank line

@3 establish program label 3
?"Enter~Character:~", prompt the operator

RIR1l:C read a single character into Register 1

B3: (R1<>'¢’) branch back to label 3 is R1 is not equal to c
?"RI~Example~Complete™ print "RI Example Complete"

E exit to command level

Once the program above is entered, run it by typing Bl<cr> and try the
examples below:

Example 1: RIR3 Read terminal input into Register 3; Enter
123<cr> and Register 3 = 123

Example 2: RIR3:6.2D Enter 123.45, Register 3 = 12345
Enter 123.4, Register 3 = 12340
Enter 12,345, Register 3 = 1234
Enter .1, Register 3 = 10
Enter -12.34, Register 3 = -1234

Example 3: RIR1:C Read a single character into Register 1
Enter a, Register 3 = a
Enter b, Register 3 b
Enter ¢, Register 3 = ¢

MPL-MATH -30- ORMEC

RI -~ Read Input / Get Input Status (continued)

Geoal 4: Read input from a device other than the current default device.
Syntax: RIB<<device>>[:<dev spec>], #R<reg>[:<format>]<sep># <cr> .
Example: RI@4,R9 Read input from Device 4 into Register 9,

Goal S5: Determine the status of the last Read Input operation.

Syntax: RI? Display status of last read operation

Usage: R<<reg>> = RI[?] Get status of last read operation

This command displays the number of registers modified by the last read
input operation (Goals 2, 3, and 4) or the input error code. This value 1s
incremented for each successful read of input. If input is not available
{null input) the value is zerc. If an input error cccurs, a negative value
is returned indicating the error code. The following error codes may be
returned:

-1 Input device time-out error. A character was not received from
the input device for the number of milliseconds specified in
<dev spec> for that device. This code can only be returned by
devices which support a <timeout> parameter in the <dev spec>.

-2 Input value too large. A number entered by the user was too .
large to fit in a 32-bit revister.

-3 Invalid character in input field. A character that is not wvalid
for the input format specified was entered by the user. For
example, the letter B’ was typed when a decimal number was

expected.
Example: RIR1,RZ2,R3 Read three numbers
B3:RI?=3 Branch i1f all three numbers were entered correctly
Bt:RI?=-1 Branch if a time-out error occurred
Bv:RI?=-2 Branch if one of the values was too large
Bc:RI?=-3 Branch if an invalid character was entered
?"Lack data™ Otherwise, there must have been too few entries
E

MPL-MATH -31- ORMEC

RI - Read Input / Get Input Status (continued)

Goal 6: Determine if there is a character available from a device,
. Syntax: RI[@<<device>>]! Display input status of port
Usage: R<<reg>> = RI[@<<device>>]! Get input status of port

This command displays 01 if a character is available at the input port, and
00 if no character is available. This command only works with devices 1
and 2. All other devices display 00.

When used with device 1, RI! may display 00 even when a character has been
recelved by the PMC. This is because MPL remcoves characters from the input
buffer while checking for a received Esc character between commands.

Device 2 will always return 1 if a character is available.

Example: RI@2:C Character input from auxiliary serial port
@wait Wait loop
Fa Call the function at label 7a’
Bw:RI!=0 Loop 1if no character has been received
RIR1:1C; Read the character into R1l
?"Received~";R1:C Print the character received
E Stop

Full Syntax for the RI Command:

. Syntax 1: RI[@<<device>>[:<dev spec>],] #R<reg>[:<format>]<sep># <cr>

Syntax 2: RIR<<device>>[:<dev spec>]<cr>

Syntax 3: RIQ@? Display current default input device

Syntax 4: RI? Display status of last read
operation

Syntax 5: RI[@<<device>>]! Display input status of port

Usage 1: R<<reg>> = RI[?] Get status of last read operation

Usage 2: R<<reg>> = RI[@<<device>>]! Get input status of port

Note: You can read inputs into multiple registers with a single RI
command. If multiple registers are specified in the RI command, items
typed on the input line may be delimited by one or more spaces or commas.
If less items are entered than expected, the registers with no input will
be left unchanged. If a blank line is entered, all registers are left
unchanged and the RI? command or function will return zero.

MPL-~-MATH -32- ORMEC

RJ - High Resolution Jog Command

Purpose:

Syntax 1:
Syntax 2:
Syntax 3:

Usage 1:
Usage 2:

where:

Example:

MPL-MATH

Sat a very high resolution speed ratio in elactrenic
lineshafting applications (external mode). Set a very high
resolution speed (internal mode).

RJ <<ingear>> fi<term># <cr> High resolution jcg
RJ <cr> Disable high resolution
RJ <display> Display high resolution speed
R<<reg>> = RJ[?] Get the last entered hi-res speed
R<<reg>> = RJ! Get the current hi-res speed
<ingear> The number of whole teeth con the imaginary input gear
using an output gear of 268,435,456 teeth. Range: 1
to 268,435,455, This value is entered intc the motion
parameter buffer.
<term> + Start motion in the positive direction.
- Start motion in the negative direction.
* Stop motion and terminate the command.
<cr> If <cr> follows <term>, the system first waits for
constant velocity to be reached, and then enables high
resolution jog mode. If <cr> immediately follows the
RJ command {with no other parameters), high resclution
jcgging is disabled, but motion continues at the
current low resolution jog speed.
<display> ? Display the last entered speed (ratio) value.
! Display current actual speed (ratioc) value (0 =
inactive).
% Repeatedly display the actual speed {(ratio)} value.
RJ6T7108864+ Accelerate to, and run at a speed ratio of

precisely one quarter of the rate of the
electronic lineshaft {(motion reference bus), if
the system is in the External Mode, If the
system is in the 384 kHz internal Mode, it will
accelerate to and run at precisely one quarter
of the internal, crystal controlled 384 kHz
clock (96 kHz).

-33- ORMEC

RJ - High Resolution_Jog Command {(continued)

The standard PMC velocity resolution of twelve bits (or 4096 parts) is
extended to 28 bkits (or 268,435,456 parts) by this command, allowing over
eight decimal places of precision. The actual speed ratio set by this
command is: <ingear>/268,435, 456

The two integers can be thought of as specifying the number of gear teeth
on ilmaginary "input" and "output" gears, where the input gear is be mounted
on the electronic lineshaft, and the output gear is mounted on the
servomotor under centrol. The output gear is fixed, and specified to have
268,435,456 teeth. Since this is more than the input gear, you can see
that the speed of the servomotor (in terms of encoder counts/sec) must
always be slower than the speed of the electronic lineshaft. Further, the
speed of the servomotor will always be ratioced to the electronic lineshaft
(once top speed is reached) by the specified ratio. e.g. 1/3 specifies
that the servomotor will run at 1/3 (in encoder counts per lineshaft count)
of the speed of the electronic lineshaft.

Notes:

1) This command has a constraint that <ingear> must be less than or equal
to 268,435,455, For a speed ratio of 1:1, use 310000, which causes the
servomotor to run at 100.00% of the electronic lineshaft speed.

2) The RJ command functions the same as the Jog command during the
acceleration and deceleration segments. Motion is accelerated at the A
rate to the closest specifiable coarse speed less than that specified
by the RJ command. The <cr> command terminator enables the final
acceleration step to the precision specified speed. This process 1is
reversed on deceleration. The RJ command therefore has an implied
semicolon (;) wait for top speed synchrconization character built in.
MPL execution is suspended until top speed i1s reached.

3) The RJ Command changes the jog speed value stored in the Motion Buffer.

4) See the footnote for the RG command.

MPL~MATH ~-34- ORMEC

RS ~ Input Scan Command

Purpose:

Syntax
Syntax
Syntax
Syntax
Usage:

where:

MPL-MATH

B w e

Set up cne or more of the Machine Inputs toc be automatically
scanned every four milliseconds. If one of the eight inputs are
at the specified input state during the scan, an input latch bit
is set. This command can also be programmed to generate an MPL
error (#01) when an input latch bit is set, and an MPL-MATH
error handler can be used to perform the appropriate actien.

RS <<seleact>>[/<<level>>] [+]<cr> Enable the input scanner
RS <cr> Disable the input scanner
RS [<<clear>>]* Clear input latch bits

RS <display> Display the results
R<<reg>> = RS[!] Read the input latch bits

<select> A hexadecimal number that defines which inputs are to
generate an error #01 when they become latched
(l=error, 0=no error). Also indicates which input
latch bits are to be cleared before enabling the input
scanner (l=clear, 0=don’t clear). When error #01
occurs, the <select> parameter is set to zero to
prevent further errcrs from occurring. The state at
which each input is latched is defined by the <level>
parameter,

<level> A hexadecimal number that defines the state at which
each input is to be latched (l=low/active,
O=high/inactive). 1If this parameter is not specified,
the last specified value is used (FF at power-up). .

+ Prevent clearing of the input latch bits specified by
the <select> parameter. When this option is
specified, the input latch bits must be manually
cleared by using the RS[<clear>]* command.

<cr> When used with parameters (syntax 1), this terminator
enables the 4 millisecond input scanner. When used
without parameters (syntax 2), this terminator
disables the input scanner.

<clear> A hexadecimal numker that specifies which input latch
bits to clear {l=clear, O=don’t clear). The input
latch bits can be displayed using the RS! command.

* Clear the input latch bits specified by the <clear>
parameter. If no <clear> parameter is specified, then
all input latch bits are cleared.

=)

<display> Display the current <select> and <level>

parameters,

! Display the input latch bits. These bits indicate
which inputs have reached their specified level at

least once (l=latched, 0=not latched). .

Repeatedly display the input latch bits.

o

-35- CRMEC

RS - Input Scan Command (continued)

Note: When an error #01l occurs, the <select> parameter is automatically
set to zerc to prevent multiple errors from occurring. The input
. scanner remains enabled to detect other inputs which may become
latched during the error processing routine,

Example 1: RS8l<cr> Generate an MPL error when input IN80’ or IN1‘ becomes
latched. Once the error occurs, the <select> value is
automatically set to zero to prevent continuous
branching from o¢ccurring., To "re—arm" the input for
error generation, the command must be re-executed.

Example 2: RS? 00/00 The "00" returned by the PMC indicates that the RS
command will not generate any errors,

Example 3: R8? 81/FF The "81/FF" returned by the PMC indicates that the RS
command is active, and looking for either INBQ’ or
INl' to become active {(iow).

Example 4: RS! 05 The "05" returned by the PMC indicates that inputs
IN4’ and IN1‘ have been latched.

Use: One immediate use for this capability i1s to deal with the
"MCS-S E-Stop Interlocks"™ as described below:

In the MCS-5 Series motion control systems, "Main Power" is three phase
220 VAC for powering the servomotor; "Control Power'm is single phase
power for powering the Programmable Moticon Controller (PMC} and the

. servodrive microprocessor, which performs servodrive diagnostic
functions. In the case of a servodrive fault, or if the Emergency Stop
pushbutton is pressed, it is important to turn off the Main Power, but
maintain the Control Power so that the diagnostic functions will
continue to operate. Under these conditions, the PMC should disable
the servo loop circuitry using a SM0 command, and print an error
message to the user.

When the fault is cleared and/or the Emergency Stop circuitry is reset
enabling the servodrive, the PMC will find the servodrive is disabled,
walt for it to stabilize and then enable the servo loop circuitry.

The solution used in the MCS$-S5 Series is to interface the D-ENARBRLE
signal to discrete input (IN2) of the PMC using an IDC-5 Opto-22
compatible module. In the automatic powerup program, an rebE command
is used to initialize error handling by the "Enable motor" routine,
The RS command is then used to set it up to be scanned every four
miliiseconds, and generate error #01 1f it is found asserted.

When D-ENABLE 1s asserted, the PMC is interrupted and branches to
routine B which ascertains that the servodrive is disabled, waits for
it to stabilize and then enables the servo loop circuitry. When this
is complete, routine E sets up the "Disable motor" routine and
initiates scanning of D-ENABLE input every four milliseconds. These
routines also allow any PSJ Overflow error to be cleared by pressing

. the E-Stop and then resetting it. No other MPL errcrs are trapped by
these routines.

MPL-MATH -36- ORMEC

RT - Read Thumbwheel Switch Input

Purpcse:

Goal 1:
Syntax:

where:

MPL-MATH

Read input from thumbwheel switches or specify a thumbwheel

switch configuration.

Specify a thumbwheel switch device configuration. .

RT [<<id>>]<spec><cr>

<id> A digit from 1 to 5 representing a specific thumbwheel

switch;

If <id>» is omitted, it will default t£o the

last <id> used. On powerup <id> defaults to 1.

<spec> A string of characters containing the follewing
configuration commands (mutually exclusive commands
may not both appear in the same <spec> string):

P<decades> specify the number of decades to read, use

the PMC inputs for BCD data. Range 1 to 15,

Note: P and E are mutually exclusive.

E<decades> specify the number of decades to read, use

S<bit#>

T<time>

the EIC inputs for BCD data. Range 1 to 15,

Use inputs IN10‘ through IN80' for BCD data
input if PMC inputs are selected (P), or
use inputs EIQ-4 through EIO-7 if EIQ
inputs are selected (E). .

Note: H and L are mutually exclusive.
Use inputs IN1’ through IN8’ for BCD data
input if PMC inputs are selected (P), or
use inputs EIC-0 through EIQ-3 if EIOQ
inputs are selected (E}.

Read input data with the Normal polarity.
Note: N and C are mutually exclusive.
Complement input data when reading it.

Specify the select cutput for the most
significant decade of the thumbwheel
switches for this <id>. Digit selection
will proceed toward lower output bits
{OUT8' to OUTL', or EIO-23 to EIO-0) as
less significant digits are selected. See
the table Digital TI/C Signal Assignments
for RD and RO Commands for <bit#> mapping.

Set the delay (in msec) before reading each
BCD decade after the select output is
asserted (4 ms resolution). Range 0 to 15.

-37- ORMEC

—— L i

RT - Read Thumbwheel Switch Input (continued)

. Example: RT2 _P3 _H C 526 TC<cr> Define Thumbwheel Switch 2 as three

decades, using PMC inputs IN10’ through
INBO' as complemented data inputs, and
using PMC outputs CUT4’ through OUT1’ as
select lines, with no delay between
setting the select lines and reading the
input data.

The configuration parameters in the <spec> are saved in internal registers.
Five thumbwheel switch definitions can be saved in addition to the
currently active definition., The factory default thumbwheel switch
definitions are defined bhelow:

RT1 P2 H C_S525 T4

RT2_P3 H C_S26_T4

RT3_P4 H C $27 T4

RT4_E5 H C_S12 T4

RT5 E6 H C S13 T4

MPL-MATH

Thumbwheel Switch 1: 2 decades, inputs IN1Q’ through
IN80', complementary inputs, using select outputs 24
and 25 (OUT1’ and OUTZ’), and using a 4 msec time
delay

Thumbwheel Switch 2: 3 decades, inputs IN10’ through
IN80O’, complementary inputs, using select outputs 24,
25 and 26 (OUT1l’ - OQOUT4’), and using a 4 msec time
delay

Thumbwheel Switch 3: 4 decades, inputs IN1Q’ through
IN80O’, complementary inputs, using select outputs 24
to 27 (OUT1l’ - OUT8’), and using a 4 msec time delay

Thumbwheel Switch 4: 5 decades, inputs EIO-4 through
EIC-7, complementary inputs, using select outputs 8 to
12 (EIO-8 to EIO-12), and using a 4 msec time delay

Thumbwheel Switch 4: 6 decades, inputs EIO-4 through

EIO-T7, complementary inputs, using select outputs 8 to
13 (EIC-8 to EIO-13), and using a 4 msec time delay

~-38- CRMEC

RT - Read Thumbwheel Switch Input (continued)

Goal 2: Read input from a thumbwheel switch.
Syntax: RT [<id>],R<reg>[:<format>]<cr>
where: <id> A digit from 1 to 5 representing a specific thumbwheel

switch; 1If <id> is omitted, it will default to the
last <id> used. On powerup <id> defaults to 1.

<format> A string of characters specifying the format in which
to input the number. The syntax for <format> are
described below:

n[D] Read a fixed-point decimal integer of n
decades.

nX Read a fixed-point hexadecimal integer of n
digits.,.

Example 1: RT2,Ré<cr> Read Thumbwheel Switch 2 into Register 6.

Example 2: RT1,R9:5D Read the first five decades of Thumbwheel Switch 1
into Register 9, as a decimal integer.

Example 3: RT1,R9:5X Read the first five decades of Thumbwheel Switch 1
into Register 9, as a hexadecimal integer.

Full Syntax of the RT Command: .
Syntax 1: RT [<id>] [#<spec>#]#,R<reg>[:<format>]#<cr> Read thumbwheel <id>
Syntax 2: RT [<id>]<spec><cr> Set up a new thumbwheel <spec> for <id>
Syntax 3: RT <id><cr> Make <id> the current default thumbwheel
Syntax 4: RT [<id>]? Display the thumbwheel <spec> for <id>
Example 1: RT2_L,R7<cr> Read value from the previously specified
Thumbwheel Switch 3 into Register 7 using
PMC inputs IN1’ through IN8’,
Example 2: RT3<cr> Select Thumbwheel Switch 3 as the current

default thumbwheel switch.

Example 3: RT_ES L N S12 T8<cr> Define the current default thumbwheel
switch setup as five decades, using EIO
inputs EIO-0 through EIO-3 as data inputs,
and EIC outputs EIO-12 through EIO-8 as
select lines, with an eight millisecond
delay before reading.

Example 4: RT27? Display the specification for Thumbwheel
Switch 2.

Example 5: RT? Display the current default Thumbwheel .
Switch.

MPL-MATH -39- ORMEC

MPL COMMANDS ENHANCED BY MPL MATH

MPL MATH provides enhanced syntax for the Branch and Function commands
to allow them to use MPL MATH bkoolean expressions.

B - Branch Command (expanded syntax)

Purpose: Transfer MPL program execution (branch) to a program label,
based on a condition defined by an expression. This command
supports conditional or unconditional, direct or indirect

branches.
Syntax: B <<label>>"[:<expr>]<cr>
where: <lakel> Label where MPL program execution will transfer, or an
expression in parenthesis which represents that label;
Since the left parenthesis ' (' indicates the start of
an expression, it cannot ke used as a label unless it
is the result of an expression.
<expr> A boolean expression; Program execution will be
transferred by the Branch command if the result of
this expression is non-zero, otherwise MPL program
execution will continue at the next statement. If
this expression is nect included, the branch will
always be taken.
Example 1: R1='Bf Assign ASCII code for B to Register 1.
Example 2: B(R1):G!>1000 Branch to the label in Register 1 if the
current system position is greater than 1000.
Example 3: BA:;RD1! Branch to label "A" if digital I/0 point EIO-1
is asserted.
. 2 1f a Register is used to specify a label, it must be enclosed in

parentheses, and contain the ASCII code for that label.

MPL-MATH -40- ORMEC

F - Function Command (expandaed syntax)

Purpose:

Syntax:

where:

Example 1:

Example 2:

MPL-MATH

Call a subroutine (function) based on a condition defined by an

expression. This command supports conditional or
unconditional, direct or indirect branches. .
F <<label>>[:<expr>]<cr>
<label> Label where MPL program execution will transfer, or an
expression in parentheses represents the label to
branch to; Since the left parenthesis ’ (’indicates
the start of an expression, it cannot be used as a
label unless it is the result of an expression.
<expr> A boolean expression; The function call will be

executed 1f the result of this expression is non-zero,
otherwise MPL execution will continue at the next
statement without execution of the function call
first. 1If this expression is not included, the branch
will always be taken.

F(R7):V!<450 Czll the function at the label in Register 7 if

FX:RD&!

the current velocity 1is less than 450,

Call function "X" if digital I/0 point EIO-6 is
asserted.

-41- ORMEC

MPL, MATH SYSTEM STATUS POLLING FUNCTIONS

Syntax: <attn> <sys poll>
. where; <attn> Ctrl] (ASCII 1D,)

<sys poll> system status poll command from the table bhelow:

<sys poll> Description Equivalent MPL
command
a Read analog input 1 RAl!
b Read analog input 2 RAZ!
d Read EIQ inputs/outputs RD!
£ Show MPL-MATH status register RF?
g <regl>" Query register (R0O-R9) ?R<regl>
w <regl><value><cr> Write register (RO-R9) R<regl>=<value>
w £ <status> Write flags register (low nybble) RFOF/<status>
y <reg> Query any register (R0-R99) ?R<reg2>
u <regl><value><cr> Write any register (R0O-R99) R<reg2>=<value>

The q, w, y, and u polling commands have a special action in that after the
<sys poll> command is received, a prompt character is returned
acknowledging the request. At this time, MPL program execution is
temporarily suspended until the register number is entered. The q and w
polling commands accept only a single-digit register number from 0 to 9,

. and the y and u commands take a two-digit register number from 00 to 99.
If it is a q or y command, the register value is immediately displayed and
MPL program execution resumes. If it is a w or u command, the <value> is
then entered {(in the current input mode of the PMC) with a <cr> as the
terminator, and MPL program executlion then resumes, If an invalid
character is entered (non-digit) at any time, the system status poll
command is quietly aborted (no error is generated).

. 13 Note that only Registers 0-% can be accessed through system status
polling with these commands.

MPL-MATH ~42- ORMEC

EXTENDED I/O CAPABILITIES

The following functions and commands are provided to enhance MPL's
interface with the PMC’s standard machine I/0, and also to provide a
consistent interface with the additional I/0 added to the PMC by the
optional EIO-800 daughter board. The EIO-900 adds one serial port, 24
discrete I/0 points, two 8-bkit analog inputs and one 8-bit analog output.

RA - Analog Input/Output Command

Purpose: Set the value of the analog output or read one of the analog

inputs.
Syntax l1: RA<<value>>[<sign>] [<cr>] Set analog ocutput level
Syntax 2: RA[<<channel>>]<display>[<<time>><cr>] Display analog input/
output
Usage 1: R<<reg>> = RA<channel>[1] Read analog input channel
Usage 2: R<<reg>> = RA[?] Read analog output
where: <value> A decimal value that defines the desired voltage level

of the general purpose analeog output; This value can
range from ¢ te 1000 representing an output voltage
from 0 to 10 VDC. The voltage polarity is specified
by <sign>. See RF command for raw analeg output.

<sign> The sign of the analog output voltage:
+ Specify positive output wveltage
- Specify negative output voltage

<channel> The analog input channel or channels to be read: .
1 Single-ended ANl input {(JM1l pin 1 = +voltage, pin
2 = ground)
2 Single-ended AN2 input (JM1 pin 3 = +voltage, pin
4 = ground)
3 Differential +/- (JM1 pin 1 = +voltage, pin 3 = -
voltage)

<display> ? Display the current setting of the general purpose

analcg output.

{ Read the specified analeg input channel and
display the result as a number from -1000 to 1000,
representing an approximate input voltage from -10
to 10 VDC.

% Repeatedly display the specified analeg input
voltage until an SCI character is received.

<time> The rate in msec that the % cutput is repeated
(default=100)

Example 1: RAL0O- Set the general purpose analog output to -1 volt

Example 2: RA? Display the voltage at the analog output

Example 3: RAR4 Set the general purpose analog output to the voltage .
in R4

MPL-MATH -43—~ ORMEC

RB - Set Baud Rate

Purpose:

Syntax 1:
Syntax 2:

Usage:

where:

MPL-MATH

Set the baud rate for the auxiliary serlal port on the EIO-900.

RB <<baud>><cr> Set baud rate
RB <display> Display current baud rate

R<<reg>> = RB[<display>] Get current baud rate
<baud> Value specifying the baud rate; from 300 to 38400

<display> ? Display currently selected baud rate.
! Same as ?

—44~ ORMEC

RD - Digital Input/Output Command

Purpose: Set or read individual general purpose digital inputs/outputs.

Syntax: RD #<<I/0 #>><operation>§<cr> Set/display digital .
inputs/outputs

Usage 1: R<<reg>> = RD<KLI/O #>>[?] Read state of one digital output

Usage 2: R<<reg>> = RD<<I/QO #>>! Read state of one digital input

where: <I/0 #> A number from 0 to 31 specifying the I/0 point to

be displayed or changed. See the table on the
following page.

Note: Attempting to change an EIO point which is
configured as an input will have no effect.

<operation> + Turn "on" the appropriate output (TTL low

level).

- Turn "off" the appropriate output (TTL high
level).

* Toggle the appropriate output to the opposite
state.

? Display the last entered state for a general
purpose machine output; A 0 or 1 will be
returned.

! Display the status of <I/O #> point; A 0 or 1

will be returned.
$ Repeatedly display the status of <I/O #> point. .

Example 1: RD20+ Turns on output EIO-20
Example 2: RD9+8- Turns on output EIO-9, turns off output EIO-8
Example 3: RD5? Display status of EIO-5, 00 if off, 01 if on

MPL~-MATH -45=- ORMEC

DIGITAL I O SIGNAL ASSIGNMENTS FOR RD & RO COMMANDS

Hex Address Bit Cpto# Signal Name Connector Function
FFFFFFFF

0 0 EIC-0 JM2-47 in/outx*

| 1 1 EIQ-1 JM2-45 in/out*

2 2 EIO-2 JM2-43 in/out*

3 3 EI0-3 JM2-41 in/out*

4 4 EIO-4 JM2-39 in/out*

5 5 EIQ=-5 JM2-37 in/out*

6 6 EIO-6 JM2-35 in/out*

7 7 EIO-7 JM2-33 in/out*

*

RF command, bit 6 configures I/0 points EIO-0 through EIO-7 as
outputs or inputs

8 8 EIO-8 JM2=31 out/in**
9 9 EIQO-S JM2-29 out/in**
10 10 EIO-10 JM2-27 out/in**
11 11 EIO-11 JM2-25 out/in**
12 12 EIO-12 JM2-23 out/in**
13 13 EIO-13 JM2-21 out/in**
14 14 EIO-14 JM2-19 out/in**
15 15 EIO~15 JM2-17 out/in**

** RF command, bit 5 configures I/0 points EIO-8 through EI0Q-15
as outputs or inputs. The EI0-%00 manual documents the
necessary hardware change.

. 16 16 EIO-16 JM2-15 out/inx*x
17 17 EIO-17 JM2-13 out/inxx*

18 18 EIO-18 JM2-11 out/in*x*

19 19 EIO~-19 JM2-09 out/ink**

20 20 EIO-20 JM2-07 out/in**x*

21 21 EIO-21 JM2-05 out/in**x

22 22 EIQ=-22 JM2-03 out/in**xx*

23 23 EIO-23 JM2-01 out/inx**

x*% RF command, bit 4 configures I/O points EIO-16 through EIO-
23 as outputs or inputs. The EI0-9%00 manual documents the
necessary hardware change.

Input 14 PMC Output15 PMC
Bit# Signal Connector Signal Connector
24 IN1' JM1-23 QUT1’ JM1-31
25 INZ' JM1-21 QuT2’ JM1~-29
26 N4’ JM1-19 QuUT4’ JM1-27
27 INS/ JM1=17 ouTs’ JM1-25
28 IN1O' JM1-15
29 IN20" JM1-13
30 IN4QF JM1-11
31 INBOQO’ JM1-9
. ¥ These input signals are read with the RO! or RD! commands.

13 These ocutput signals are read with the RO? or RD? commands.

MPL-MATH -46- ORMEC

RF -~ Flag Status Register

Purpose: Set or show status and general purpose bit flags. These bit
flags are stored in non-volatile memory, and do not change when
the power is cycled. 1If non-volatile memory is lost, the flag .
bits are set to 40,.

Syntax 1: RF <<select>>[/<<status>>]<cr> Set flags register

Syntax 2: RF <display> Display status of flags register
Usage: R<<reg>> = RF[<display>] Get status of flags register
where: <select> A hex value which indicates which of the general

purpose flag bits are to be changed. A bit value of 1
indicates that the flag bit is to be changed to the
corresponding bit value in the optional <status>
parameter. A bit value of 0 indicates that the bit is
to remain unchanged. The flag bits are assigned as

follows:

Bit 7: RAW ANALOG I/0 ENABLE causes the RA command to
skip the normalization process before reading
and writing to the A/D and D/A converters. The
input and output values will be 8-bit unsigned
numbers (0 to 255) equal to the values read and
written to the analog converter chips.

Bit 6: EIO-0 THRQUGH EIQO-7 CONFIGURE selects the
direction of digital I/0 bits EIO-0 through
EIO-7 as either inputs (1) or outputs (0). .
This port is reconfigured immediately upon
execution of the RF command.

Bit 5: EIO-8 THROUGH EIO-15 CONFIGURE selects the
direction of digital I/0 bits EIC-8 through
EIO-15 as either inputs (1) or outputs (0). A
hardware configuration jumper must alsc be
switched to affect this change. A change of
this bit will only take effect at the next PMC
reset.

MPL-MATH -47- ORMEC

RF - Flag Status Register (continued)

Example 1:

Example 2:

MPL-MATH

<status>

<display>

RE30/0<cr>

RFBO<cr>

EIO-16 THROUGH EIQ-23 CONFIGURE selects the

direction of digital I/O bits EIO-16 through
EIQ-23 as either inputs (1) or outputs (0). 2
hardware configuration jumper must also be
switched to affect this change.

A change of

this bit will only take effect at the next PMC

Bit 4:
reset.

Bit 3: General purpose
program.

Bit 2: General purpose
program,

Bit 1: General purpose
program.

Bit 0: General purpose
program.

bit to be

bit

bit

bit

A hex value which sets the
the default wvalue is FF.

?
!

to be

to be

to be

state

set

set

set

set

or

or

or

or

of the

read by an MPL

read by an MPL

read by an MPL

read by an MPL

selected bits;

Display the last entered flags register value
Display the current flags register value

configures EIO-8 through EIO-23 as outputs after

the next hardware reset or power-up.

This is the

default configuration shipped by ORMEC.

enables RAW analog I/0 mode.

~48-

ORMEC

RO - Extended Digital Input/Qutput Command

Purpose: Set selected general purpose digital machine outputs or read
general purpose digital machine inputs.

Syntax 1: RO <<select>>[/<<status>>]<cr> Set digital outputs

Syntax 2: RO <display>[<<time>><cr>] Display digital inputs/outputs
Usage 1: R<<reg>> = RO[?] Read state of digital outputs
Usage 2: R<<reg>> = RO! Read state of digital inputs
where: <select> A hexadecimal number that specifies which outputs (of

32 total) will be driven to a status. A specific bank
of 4 I/0 points is handled by each hexadecimal digit.
See the table on the page following the RD command.
Eight hexadecimal digits could effectively mask or
unmask each of the 32 I/O points to which the <status>
(on/off) pattern would be applied.

<status> A hexadecimal number, providing an output pattern for
up to 32 outputs. Individual outputs masked out by
the <select> argument will be unaffected by this
pattern. Any of the 32 I/O points configured as
inputs will also be unaffected by this output pattern.

<display> ? Display the last entered state of the general

purpose machine outputs; An eight digit
hexadecimal value will be returned.

! Display the current state of the general purpose
machine inputs.

% Repeatedly display the current state of the
general purpose machine inputs until an SCI
character is received.

<time> The rate in msec at which the % output is repeated
(default = 100)

This command is designed to be used with Opto-22 compatible modules and a
24 slot I/0 rack, and consequently turning an output "on" defines an active
(low) TTL signal level, lighting the status LED and causing the Opto Module
output to conduct. Conversely, turning an output "off" defines an inactive
(high) TTL signal level, which turns off the Opto-22 module. Also, the Bit
#'s in the <select> and <status> parameters, and the EIO Signal Names,
correspond with the Opto-22 I/0 numbers printed on the I/0 Rack.

Example 1: RO400<cr> Turn "on" output EIO-10

Example 2: RO%900<cr> Turn "on" ocutputs EIO-11 and EIO-8
Example 3: R0O4200/0<cr> Turn "off" outputs EIO-14 and EIO-9
Example 4: RO! Display current state of the Digital I/0
Example 5: BZ:RO!->4<cr> Branch to label "2"™ if EIO-4 is asserted

Example 6: BW:RC!->4=0<cr> Branch to label "W" if EIC-4 is not asserted

MPL-MATH -49- ORMEC

RP - PMC Talk Command

Purpose: To allow the user to communicate through the serial

communications interface with auxiliary PMCs connected to the
auxiliary serial port.

Syntax: RP [<<axis>>]<cr>
where: <axis> The axis ID to select before entering talk mode;

Once talk mode is entered, all characters that go into the PMC programming
port, except for special characters, will be sent directly out the EIO
auxiliary serial port. All characters that go into the EIO auxiliary
serial port will be sent directly out the PMC programming port. The
following characters perform a special function when they are received by
the programming serial port, and are not sent directly to the auxiliary
serial port:

Key Sequence Hex Value Function Performed

Ctrl/[1D Select axis or system status poll (see PMC
manual)., This command is interpreted by the
master PMC and not by the slaves cconnected to
the auxiliary serial port.

Ctrl/A 01 Sends a 1D,,, out the auxiliary serial port.
This is used to select a slave axis or perform
system status pelling on a slave.

Ctrl/X 18 Exits talk mode, returns to MPL command mode.

MPL-MATH -50- ORMEC

—— i e e

RX -~ External Register Read/Write Command

Purpose:

Note:

Syntax 1:
Syntax 2:
Syntax 3:

Usage:

where:

Note:

MPL-MATH

Set or display the contents of a register on an auxiliary PMC
who’s programming serial port is connected to the auxiliary
serial port of the main PMC.

The auxiliary PMC must be in hexadecimal communications mode
(input and output) with no echo for this command to function
properly (SZ41l). This command uses I/0 device 2 for
communications with the auxiliary PMC, and the communications
time-out should be set using the RI or ? command.

RX <<reg>>[<axis>] = <expr><cr> Write register
RX=<axis><cr> Select axis
RX <poll>[<axis>],R<<reg>>[:<format>] [;]<cr> Status poll input

R<<reg>> = RX<<reg>>[<axis>] Read register

<reg> The number (from 0 to 99) of the register to write to
on the auxiliary PMC. This number can alsoc be the
result of an expression enclosed in parentheses. Only
register numbers 0 through 9 are supported by system
status polling for MPL-MATH versions prior to 1.la.
See Registers Section,

<axis> The axis ID to select before sending the command (A-2)

<expr> The value to write to the auxiliary PMC (for register
writes only);

<poll> A letter representing the system status poll command .

to send to the auxiliary PMC before accepting input;

There is also an RX function with the same syntax 1 as the RX
command.

51— ORMEC

RX - External Register Read/Write Command {continued)

Example 1:

Example 2:

Example 3:

Example 4:

Example 5:

Example 6:

Example 7:

Example 8:

Exanple 9:

MPL-MATH

?RXZ

?RX4B

RX1=123

RX1B=012345678

RX=A

RXcA,R45;2x;

7RXZ2A+RX4B+R7

RX5=R¥X5-1

R15=RX{(R10)C

Read and display the contents of Register 2 on
the current auxiliary axis (sends <attn>q2).

Read and display the contents of register 4 on
axis B; (sends <attn>B<attn>g4d}.

Write the value 123 to Register 1 on the
current auxiliary axis (sends
<attn>wl0000007B<cr>) .

Write the hex value 12345678 to register 1 on
axis B {sends <attn>B<attn>wll2345678<cr>).

Selects auxiliary axis A (sends <attn>Aa).

Poll the inputs on axis A, and store the result
in R45 (sends <attn>A<attn>c and reads 2 hex
digits).

Calculate and display the sum of the three
numbers in R2 on axis A, R4 on axis B, and R7

on the local axis.

Decrement the value in register 5 on the
currently selected auxiliary axis.

Store the contents of the axis C register
pointed to by local R10 into local RI15.

-52- ORMEC

HARDWARE COUNTING CAPABILITIES

The opticnal Encoder Backup Compensator,EBC-900 daughter board, provides
access to five AM-9513 programmable Up/Down hardware counters’®., The
functions and commands used to access this capability from MPL are
described below.

It should be noted that this documentation does not try to describe the
features of the AM~-9513 counters, which are extensive. Due to the
complexity (and capability) of the AM-9513 counters, it is recommended that
the user consult the manual listed in the footnote before attempting to use
these commands.

16 Refer to the Advanced Micro Devices "Am9513A/Am9513 System Timing

Controller Technical Manual” for detailed information on the operation
cf the counters.

MPL-MATH -53- ORMEC

RC - Counter Command

Purpose:

Syntax 1:
Syntax 2:

Usage 1:
Usage 2:
Usage 3:
Usage 4:
Usage 5:
Usage 6:
Usage 7.

where:

MPL~-MATH

Allow the specification, loading, arming, and disarming of the
five general purpose hardware counters on the optional EBC-900
daughter board.

RC [#<counter>#] [#[<cmd>[<<value>>][.]][<sync>]#] <cr>
RC [#<counter>#] <display>

R<<reg>> =RCE{?] Contents of EBC mode register
R<<reg>> =RC<counter>H[?] Contents of <counter> Hold register
R<<reg>> =RC<counter>[L] [?] Contents of <counter> Load register
R<<reg>> =RC<counter>M{?] Contents of <counter> Mode register
R<<reg>> =RC<counter>0{?] State of <counter> Output
R<<reg>> =RC<counter>S[?] Contents of <counter> via Hold reg.
R<<reg>> =RC<counter>! Contents of <counter> via Hold regq.
<counter> The counter number, 1 through 5, to be used; This
also selects the output and the gate to be used as
described in Table 1. Some counter commands (A, C, D,
S) allow more than one counter to be selected while
others (H, L, M, 0) use the first counter number
specified.

Table 1 - Output and Gate Assignments

Counter Qutput Gate
1 (not used) "EBCR" input on EBC
2 "SNSROUT" to PMC "SENSIN" input on PMC
3 "ECROQUT" to PMC "ENCR" input on PMC
4% To counter source S3 Net EBC forward counts
) EBC "TIMEQUT1"output EBC flip flop

* If the Encoder Backup Compensator (EBC) function is
being used on the EBC board, counter 4 must not be
used by the RC command. This would cause
unpredictable results.

<emd> A Arm counters, Arms all of the selected counters
simultaneously. If <value> is specified, it is stored
in the first specified counter’s Load register, and
then all counters are loaded before arming.

C Load Counters. Loads all of the selected counters
simultaneously with the contents of their
corresponding Load registers. If <value> is
specified, it is stored in the first specified
counter’s Load register before the counters are
loaded.

-54-~ ORMEC

RC - Counter Command (continued)

D

H?

L?

MPL~MATH

Disarm counters., Disarms all of the selected counters
simultaneously. No <value> is specified for this
command.

Select EBC mode. Stores <value> in the EBC mode
register. <value> must be a hexadecimal number as
described in Table 2. If <value> is not specified, it
defaults to zero.

display the contents of the EBC mode register

Table 2 - EBC Mode Register Bit Assignments

Bit 7: EBC Reset
0 = release reset (allow normal ERC function)
1 = hold reset on (don’t allow EBC to count)

Bit 6: Sensor Source Select
0 = select PMC "SENSIN" input
1 = select EBC "SNSRCUT" (counter 2 output)

Bit 5: Encoder Reference Source Select
0 select PMC "ENCR" input
1 select EBC "ECROUT" (counter 3 output)

Bit 4: EBC Flip Flop Clock

Bit 3: reserved

Bit 2; reserved

Bit 1: EBC General-Purpose "OQUT2" Output

Bit 0: EBC General-Purpose "OUT1" Output

Store to counter Bold Register. Stores <value> in the
first specified counter’s Hold Register. If <value>
is not specified, it defaults to zero.

display the contents of the Hold Register

Store to counter Load Register. Stores <value> in the
first specified counter’s Load Register. If <value>
is not specified, it defaults to zero.

display the contents of the Load Register

Store to Counter Mode Register. Stores <value> in the
first specified counter’s Mode Register. <value> must
be a hexadecimal number as described in Table 3. If
<value> is not specified, it defaults to zero.

display the contents of the Counter Mode Register

=55- ORMEC

Table 3 - Counter Mode Register Bit Assignments

MPL-MATH

Bits 15-13: Gating Control

000 = no gating

001 = active high terminal count from counter
010 = active high level gate n+1

011 = active high level gate n-1

100 = active high level gate n

101 = active low level gate

110 = active high edge gate
11i = active low edge gate

a s Jgal

Bit 12: Scurce Edge

0 = count on rising edge
1 = count on falling edge

Bits 11-8: Count Source Selection

0000 = 0 = terminal count from previous counter
0001 = 1 = PMC command pulses

0010 = 2 = EBC "SNSR2" sensor input

0011 = 3 = output from counter 4

0100 = 4 = EBC counter overflow

0101 = 5 = PMC velocity range frequency x 4
0110 = 6 = EBC "EBCR" encoder reference input
0111 = 7 = PMC "SENSIN" sensor input

1000 = 8 = PMC "ENCR" encoder reference input
1001 = & = EBC net forward encoder counts
1010 = A = EBC flip flop

1011 = B = 3,072 MHz clock

1100 = C = 192.0 kHz clock

1101 = D = 12.00 kHz clock

1110 = E = 750.0 Hz clock

1111 = F = 46.875 Hz ciock

Bit 7: Special Gate
0 = disable special gate
1 = enable special gate
Bit 6: Reload Source
0 = reload from Load Register

1 = reload from Lecad or Hold Register

Bit 5: Count Control

0 = count once

1 = count repetitively
Bit 4: Count Base

0 = binary count

1 = BCD count
Bit 3: Count Direction

0 = count down

1 = count up

000 = inactive, output low

001 = active high terminal count pulse
010 = toggle on terminal count pulse
011 = (iliegal)

100 = inactive, ocutput high impedance
101 = active low terminal count pulse
110 = {illegal)

111 = (illegal)

...56_

(n = first specified <counter>)
(see Table 1, Gate Assignments)

n-1

Bits 2-0: Qutput Contrel (see Table 1, Output Assignments)

ORMEC

RC - Counter Command (continued)

<cmd> cont’d
o] Set or clear Qutput. If <value> is non-zero, the
first counter’s output is set (turned on}, otherwise
it is cleared (turned off).
0? display the state of the selected outputs

8 Save counters. Saves all of the counters
simultaneously in their corresponding Hold Registers.
No <value> is specified for this command.

8? display the new contents of the first counter’s Hold
Register

<value> An optional argument to <cmd>. This argument is in
units of the current input mode of the PMC unless
otherwise specified. If the value is a hexadecimal
number and the next command could also be interpreted
as a hexadecimal digit (A - F), then a decimal point
(.) should be used to signify the end of the
hexadecimal number.

Separate a hexadecimal argument from the following
command if the following command could also be
interpreted as a hexadecimal digit (A - F).

<display> ? Display the contents of the counter Load Register.
! Display the current count. This terminator will
cause the current count to be saved in the Hold
Register, and previous contents will be destroyed. .
% Repeatedly di-play !

Example 1: RC2_M0805.E40.A20<cr> Configure counter 2 to count PMC encoder
reference pulses, counting down from 20,
and assert the PMC sensor input when the
count reaches zero. The '_’ character
is optional, but the ’.’ is required to
separate the E and the A commands from
the previous command’s hexadecimal
argument.

Example 2: RCA<cr> Re—arm the counter to repeat the last
specified sequence.

MPL-MATH =57~ ORMEC

o TR e W - oo L LE T IR TL TS SFTR v v iR v VellTh

MPL MATH ERROR CODES
Special Non-Error Codes:

01 Input Latch Detected: An input latch was detected by the RS
command.

Math Error Codes:

10 Divigion by Zero Error: An attempt was made to divide a number by
zero in an arithmetic expression.

11 Overflow Error: Overflow occurred during an arithmetic operation,

12 Illegal Expression Syntax: A binary operator or closing parenthesis
was expected,

13 Illegal Register Number: The R register designator character was
followed by a character other than register number 0 through 9.

14 Value Expected: A value such as an integer, register, unary
operater, functicn name, or an expression in parenthesis was
expected.

15 Expression Too Complex: Too many levels of parentheses and/or

operations with different precedence have been attempted. Break up
the expression into several simpler ones using registers.

I/0 Error Codes:

20 Unassigned I/0C Device Number: The specified I/0 device number is
not currently assigned to any device.

21 Device Specifier Syntax Error: Syntax error in <dev spec> portion
of a ?, RI, or RT command.

22 Input /Output Operation Aborted by User: The user pressed the Escape

key while the system was waiting to receive or send a character
through an I/0 device,.

23 Invalid character in input field. A character that is not valid for
the input format specified was entered by the user,

24 Input Value Too Large. A number entered by the user was too large
to fit in a 32-bit register.

25 I/0 Device Timeocut: A character was not sent to or received from

the I/0 device for the number of milliseconds specified in <dev
spec> for that device.

26 System Status Polling Disabled on Slave: An RX command failed
because system status polling was disabled on the slave PMC.
27 Invalid Slave Response: An RX command was unsuccessful because the

slave responded with an invalid character.

Miscellanegus Errors:

30 IF without matching ENDIF: A R7<expr> command was encountered
without a matching R? command.

31 Extended Velocity Out of Range: The specified extended velocity is
out ¢f the allowable range.

32 Invalid Counter Number: Counter number specified is outside range
of 1 to 5 (hardware counters available on the optional EBC-900).

33 Invalid Counter Command: The counter command letter given in the RC
command is invalid. It must be one of the command letters described
under the <command> argument of the RC command description. (for
hardware counters available on the optional EBC-900)

MPL-MATH -58- ORMEC

APPENDIX A: I/O DEVICE DRIVERS
DEVICE 1 - MAIN SERIAL PORT TERMINAL DEVICE

This device driver assumes that there is an IBM-PC compatible running .
our motion control development software, or a dumb terminal serial device,
connected to the main serial port on the PMC. All output from the ?
command is sent directly to the terminal a character at a time. Each line
of output is terminated by a carriage return and a line feed. When the RI
command is executed, it waits for the user to type a line of up to 32
characters on the terminal. All characters typed by the user are entered
into the input buffer and echoed back to the terminal, except for the
following special characters:

Return [CR] (0ODh) - Enters the line currently being typed, and resumes
execution of the RI command.

Back Space [BS] (08h) & Delete [DEL] (7Fh) - Deletes the previous
character and moves the cursor back cne space.

Ctrl/X [CAN] (18h) - Erases the entire line being edited, and starts

over.
Escape [ESC] (1Bh) - Aborts the program currently being executed and
generates an "I/O Operation Aborted by User" error. (Error code E7.)

With this device driver, MPL execution is suspended until the RI command is
completed. The RI Command will be completed only when character entry is
done and the Return key is pressed to enter the line.

The baud rate of the main serial port is configured by the SB command. The :
data format is always 8 data bits, 1 stop bit, no parity. .

DEVICE 2 - AUXILIARY SERIAL PORT TERMINAL

This device driver is identical to Device 1 with the following
exceptions:

1. It uses the auxiliary serial port on the EIO daughter board instead
of the main serial port.

2. Escape [ESC] (1Bh) performs the same function as Ctrl/X [CAN] (18h)
while entering a line, and does not abort the MPL prcgram.

3. The baud rate of the auxiliary serial port is configured by the RB
command instead of the SB command. The data format is always 8 data
bits, 1 stop bit, no parity.

With this device driver, MPL executiocn is suspended until the RI command is

completed. The RI Command will be completed only when character entry is
done and the Return key is pressed to enter the line,

MPL-MATH | -59- ORMEC

Appendix A: I/0 Device Drivers

DEVICE 3 - MAIN SERIAL PORT ITM~270 / ITM-27 TERMINAL

. This device driver supports both the ITM-270 and the ITM-27 Industrial
Numeric Keyboard & Display units in a multi-drop polled moede. At the
beginning of each output line that is sent to the terminal, the device
address is sent. The address is a two-digit ASCII number from 01 to 63
which is configurable via the device specifier. Following the address, all
output from the ? command is sent directly to the terminal a character at a
time, Each line of output is terminated by a single carriage return,

When the RI command is executed, it sends a poll command to the terminal to
ask for the contents of the input buffer, and then immediately receives the
contents of the buffer. If for some reascn the terminal does not send the
contents of the input buffer, a timeout occurs and an empty input buffer is
returned -- the driver will send a retransmit command to the terminal on
the next call to the RI command. The poll and retransmit commands are
different between the ITM-27 and ITM-270 terminals, and the device
specifier is used to select the appropriate protocol.

Device Specifier Syntax: [<<address>>] [<type>]
where: <address> a decimal number frem 1 to 63 representing the address
to be sent to the terminal at the beginning cof each

line. Defaults fto 1.

<type> A selects the ITM-270 polling protocol (default),
. B selects the ITM-27 polling protocol.

The baud rate of the main serial port is confiqured by the SB command. The
data format is always 8 data bits, 1 stop bit, no parity.

DEVICE 4 - AUXILIARY SERIAL PORT ITM-270 / ITM-27 TERMINAL

This device driver is identical to Device 3 with the following
exceptions:

1. Uses auxiliary serial port cn the EIO daughter board instead of the
main serial port.

2. The baud rate of the auxiliary serial port is configured by the RB
command instead of the SB command. The data format is always 8 data
bits, 1 stop bit, no parity.

MPL-MATH -60- ORMEC

Appendix A: I/0 Device Drivers

QUTPUT DEVICE 5 - NRO-066 NUMERIC READOUT

This device driver is designed to interface to the NRO-066 Six Digit .
Numeric Readout. This readout is primarily a numeric display, but can
display all of the following characters: "-,0123456789EHILOPS" and space
(all letters are upper-case). The output is buffered internally and the
display is not updated until the end of the line. The display time is 4
milliseconds per character -- 24 milliseconds to update the entire display.
Up to four displays can be connected at one time, using the optional
display select outputs (EIO-14 & EIOC-15}.

Device Specifier Syntax: <select> A number from 1 to 4 representing the
value to be placed on the display select
outputs (EIC-14 & EIO-15) when the
display is updated. If this number is
zero (0), the display select outputs are
not contrelled, and can be used for
other purpocses.

EIQO to NRO-066 Display Connections

EIC JMZ Pin # & Name Display Pin # & Name
1 EIQ-23 8 DECIMAL POINT
3 EIO-22 7 DIGIT SELECT 4
5 EIO~21 & DIGIT SELECT 2
7 EIO-20 5 DIGIT SELECT 1
9 EIQ-19 4 BCD 8 DATA
11 EIO-18 3 BCD 4 DATA
13 EIO-17 2 BCD 2 DATA
15 EIO-16 1 BCD 1 DATA
17 EIQ-15 (opticnal) 10 DISPLAY SELECT 2
19 EIO-14 (opticnal) 9 DISPLAY SELECT 1
49 +5V 11 DC POWER +
EVEN DGND 12 DC GROUND

Note: Before using the BCD display driver the digital I/0 ports must be
configured properly. Outputs EIO-16 through EIO-23 must be configured as
outputs by clearing bit 4 of the flags register (RF10/0), and then cycling
power. If the display select outputs are used, outputs EIO-8 through EIO-
15 must also be configured as outputs by clearing bit 5 of the flags
register (RF20/0), and then cycling power.

MPL-MATH -61- ORMEC

NIy T e, T L LA - <. W

Appendix A: I/0 Device Drivers

INPUT DEVICE 5 ~ THUMBWHEEL SWITCHES

The thumbwheel switch driver reads the current setting of a bank of
thumbwheel switches, converts each decade to an ASCII character (0-9, A-F)
and returns the result in the input buffer. The RT command can then
interpret the characters in the input buffer as either a decimal number or
a hexadecimal number, depending on the application.

The thumbwheel switches are configured such that each thumbwheel switch
input (each digit) is connected to a unique select line from the PMC (or
EIQO). The thumbwheel switch BCD outputs are connected to a common bus
which is connected to four PMC {(or EIQO) inputs. The select lines are each
strobed low, in sequence, starting with the most significant digit of the
number, and the data is stored in the input buffer. The device specifier
determines which outputs are used as select lines to strobe the individual
digits, and which are used as BCD data inputs.

The configuration parameters in the <spec> are saved in internal registers.
There is one set of internal registers for each <id> number (a total of
five).

Before using the thumbwheel switch driver the digital I/0 ports must be
configured properly. If the EIC inputs are used for the BCD data, they
must be configured as inputs by setting bit 6 of the flags register (RF40).
If the EIO outputs are used as select lines, they must be configured as
outputs by clearing bits 5 and/or 4 of the flags register (RF30/0), and
then cycling power,

MPL-MATH -62- ORMEC

APPENDIX B: ASCII TABLE

Each character that the PMC can print has a unique number associated with .
it. The number that represents each character is defined by the American
Standard Code for Information Interchange (abbreviated ASCII). The table

below lists all of the printable and non-printable control characters along

with their corresponding number (in both decimal and hexadecimal).

Dec Hex Char Key Dec Hex Char Dec Hex Char Dec Hex Char
_ — —
0 00 NUL Ctrl-@ 32 20 SPACE 64 40 @ 96 60 A
1 01 SOH Ctrl-A 33 21 ! 65 41 A 97 61 a
2 02 STX Ctrl-B 34 22 " 66 42 B 98 62 b
3 03 ETX Ctrl-C 35 23 * 67 43 c 99 63 c
4 04 EQT Ctrl-D 36 24 8 68 44 D 100 64 d
5 05 ENQ Ctrl-E 37 25 % 69 45 E 101 65 e
6 06 ACK Ctrl-F 38 26 & 70 46 F 102 66 £
7 07 BEL Ctrl-G 39 27 r 71 47 G 103 67 g
8 08 BS Ctrl-H 40 28 (72 48 H 104 68 h
9 0% HT Ctrl-I 41 29) 73 49 I 105 69 i
10 oA LF Ctrl-gJ 42 2A * 74 4A J 106 6A 3
11 0B VT Ctrl-K 43 2B + 75 48 K 107 6B k
12 0C FF Ctrl-L 44 2C p 76 4C L 108 6C 1
13 0D CR Ctrl-M 45 2D - 77 4D M 109 6D m
14 CE 50 Ctrl-N 46 2B . 78 4E N 110 6E n
15 oF SI Ctrl-0 47 2F / 79 4F 0 111 6F o
16 10 DLE Ctrl-P 48 30 0 80 50 P 112 70 P
17 11 DC1 Ctrl-Q 49 31 1 81 51 Q 113 71 q
18 12 DC2 Ctrl-R 50 32 2 82 52 R 114 72 r
19 13 DC3 Ctrl-S 51 33 3 B3 53 s 115 73 a
20 14 DC4 Ctrl-T 52 34 4 g4 54 T 116 74 t
21 15 NAK Ctrl-U 53 35 5 85 55 U 117 75 u
22 16 SYN trl-v 54 36 6 86 56 v 118 76 v
23 17 ETB Ctrl-w 55 37 7 87 57 W 119 77 w
24 18 CAN Ctrl-X 56 38 8 88 58 X 120 78 X
25 19 EM Ctrl=-Y 57 39 9 89 59 Y 121 78 y
26 1a SUB Ctrl-2 58 3A : 90 52 Z 122 1A z
27 1B ESC Ctrl-| 53 3B H 91 5B (123 7B {
28 1C FS Ctrl=-\ 60 3C < 92 sC \ 124 7C |
29 iD GS Ctrl-] 61 3D = 93 5D 1 125 7D }
30 1E RS Ctrl-» 62 3E > 94 5E ~ 126 TE ~
31 1F US ctrl=-_ 63 3F ? 95 SF _ 127 7F DEL

MPL-MATH ~-63- ORMEC

