PRG

POSITION REFERENCE GENERATOR

INSTALLATION AND OPERATION MANUAL
PRGOOTe

Copyright (c) 1983
Ormec Systems Corp.

ALL rights reserved

PRGO01e.83.10.10.gep =1= ORMEC

Section

1.0
.1
.2
.3
-4
.5

2.0
-1
.2

7.0
.
.2

8.0
.1

.3
-4
.5
.6
.7

PRGOO1e

TABLE OF

TABLE OF CONTENTS

Description

GENERAL DESCRIPTION
Introduction
Computer Hosted Operation
Programmable Controller Hosted Operation
Stand Alone Operation
Signal Naming Conventions

THEORY OF OPERATION
Introduction
Positioning Command Language Architecture

SPECIFICATIONS
Electrical Specifications
Mechanical and Environmental

INSTALLATION
Mounting
Electrical Installation
Parallel Motion Control Channel (JM1 OR JM6)
Serial Motion Control Channel (JM4)
Digital Position Link Interface (JM3)
Machine I/0 Interface (JMZ2)
High Speed Sensor 1/0 Interface (JM5)
Mapping of PC Edge To D-Series Connector

GETTING STARTED

OPERATION
Overview
Setup Parameter Ranges
Frequency Referenced Motion
Distance Referenced Motion
PRF1x1c Indexer Firmware Command Description
1/0 Condition Table
Exception Handling and Error Codes
Status Registers

MAINTENANCE
Preventive
Demand

APPENDIX
PRG System Interface Diagram
PRG PC Board Layout
PRG Component Layout
PRG Serial MCC Interface
PRG Machine 1/0 Interface
PRG Parallel MCC Interface
PRG HSS and DPL Interface
Sales/Service Policy

CONTENTS

13

14

26

31

50

ORMEC

1.1 GENERAL DESCRIPTION

GENERAL DESCRIPTION

1.1 INTRODUCTION

The ORMEC Position Reference Generator (PRG) is a microcomputer based product
which facilitates the design of high performance position control applica-
tions. A typical servo positioning system utilizing a PRG is diagrammed in
Appendix 8.1. The PRG operates in conjunction with the ORMEC Motor Loop Con-
troller (MLC).

In combination with a servodrive, a servomotor, a DC tachometer and an incre-
mental position encoder, the MLC is used to create a closed loop digitat
position servo. The resulting position control system works much like a
stepping motor/translator system in that it converts TTL level command pulses
into incremental movement. For a more detailed discussion of the MLC consult
the ORMEC Motor Loop Controller Manual (MLCOO1).

Since the speed and accuracy of an MLC based positioning system are one or two
orders of magnitude greater than a typical stepping motor application, creat-
ing positioning information to drive it at its full capability is a signifi-
cant real time problem. The PRG solves that problem by translating straight-
forward ASCII commands into positioning pulse information with frequencies of
up to 192 kHz. This servo "position reference" information is transmitted to

. the MLC through a differential interface called the Digital Position Link
(pPL).

The PRG is available as a standard product in three versions. Information in
this manual applies to all three versions except when otherwise noted. Note
particularly that all information relating to programming does not apply to
the PRG-900, since it does not have the programming option.

PRG-900 - standard indexing firmware and no programming

PRG~901 - standard indexing firmware with programming and 2k bytes
EEPROM non-volatile memory

PRG-902 - standard indexing firmware with programming and 2k bytes RAM
memory

The PRG-901 was designed to be operated in three configurations:

Computer Hosted - interfaced through either the serial or
the parallel Motion Control Channel
{MCce)
. Programmable Controller Hosted ~ interfaced through the Machine I/0 (MIO)
Stand Alone - interfaced through the MIO

PRGOO1e -3- ORMEC

1.2 GENERAL DESCRIPTION

1.2 COMPUTER HOSTED OPERATION

A PRG based positioning system can be used as a slave serving a host computer
through either a parallel or a serial interface called the Motion Control
Channel (MCC). The PRG plugs directly into a MULTIBUS (registered trademark
of Intel Corporation) card cage but also has connectors for use with other
systems through a parallel I/0 interface or a serial interface. When plugged
into a MULTIBUS system, the PRG is mapped to two adjacent locations in I/0
space. For details see the OPERATION Section.

Communications between a host computer and the PRG are essentially identical
to communications with a USART serial device. The host computer sends a byte
{character) of information to the PRG, and then must wait for that byte to be
processed by the PRG. The completion of processing of each character is
indicated by a bit in the status register for paraltel mode, or by the hard-
ware handshake line in serial mode.

when a command is completed by sending a 'command terminator", the PRG will
then execute that particular command. Upon finishing the command, the PRG
will send a "greater than" (>) signal to the host to indicate that it is
YREADY'" for a new command.

Therefore, simply by sending ASCII characters to the PRG, the host computer
can execute PRG positioning commands directly, including commands which cause
the PRG to execute complex user defined motion control funmctions. Only high
level commands and status requests are required from the host computer, since
the PRG isolates it from real time servicing requirements of the servo posi=-
tioning system, allowing a single microcomputer host to manage several high
performance servomotor systems.

Relative or absolute positioning commands of more than nine digits can be
performed. In addition, system position, velocity and acceleration infor—
mation can be requested asynchronously. This relieves the host from tasks
such as keeping track of the current absolute position of the system or
storing system parameters required by the application.

1.3 PROGRAMMABLE CONTROLLER HOSTED OPERATION
A PRG based system can perform multiple complex motion control functions under
the direction of a Programmable Controller using a simple interface. This

is accomplished using a PRG-901 as follows:

-~ The user programs motion control functions using any ASCII terminal
device, giving them single character ASCII names

- The programmable controller selects the appropriate function by plac~
ing the ASCII address in parallel at the Machine I/0 (MIO) Interface
and asserting the EXECUTE' input.

- The programmable controller can tell when the functien is complete by
observing the READY signal from the MIO.

- The function can be dinterrupted at any time by asserting the
STOP' 1input at the MIO.

PRGOOTe -4- ORMEC

1.3 GENERAL PESCRIPTION

1.4 STAND ALONE OPERATION

Since the PRG-901 is equipped with its own Machine 1/0 and non-volatile posi-
tioning command language program memory, it can operate in a stand alone mode,
controlling a small machine or machine module directly from its positioning
command language program. Included in the 24 I1/0 signals of the MIO are four
general purpose inputs and four general purpose outputs, which can be used for
switches or machine sensors and outputs such as indicators, or solencids. The
MIO is flat cable compatible with industry standard Opto 22 type input/output
modules allowing flexible interface to high voltage AC or DC drivers and
receivers.

A detailed description of the Machine I/0 Interface is in SECTION 4.4

1.5 SIGNAL NAMING CONVENTIONS

Throughout this manual, references to inverted logical signals will use the
convention of following the signal name with an apostrophe (). e.g. INPUT'
The drawings in the APPENDIXES will use the "overbar" notation. Moreover,
signals without apostrophes will be considered logically "true™ or "asserted"
when they are "high" or "set" i.e. at the level of the power supply (either
+5 VDC or +12 vDC). If they are at 0 VDC ("lLow" or "cleared"), they are
considered logically "false”. e.g. The signal RESET is expected to

reset the MLC -when it is "true'" or "asserted" (at a +5 VDC Llevel).

Conversely, signals with apostrophes following them are considered logically
"true", or "asserted” when they are "low", and logically "false"” when they are
high. e.g. The signal RESET' should be at 0 ¥DC when it is desired to reset
the MLC.

PRGOOTe -5- ORMEC

2.0 THEORY Of OPERATION

THEORY OF OPERATION

2.1 INTRODUCTION

The PRG operates as an intelligent sltave motion control system, receiving high
Level commands via the Motion Control Channel (MCC) and in turn providing
position reference information to the servo system (MLC) through the Digital
Position Link (DPL) at connector JM3.

The MCC physically corresponds to connector JM1 or JM6 for parallel operation
or connector JM4 for serial operation. When running & program, the PRG re-
ceives its commands from the program buffer instead of from the MCC. The host
may interrupt a program at any time, however, by transmitting a character to
the PRG.

The PRG positioning command Language is architected to provide a logical,
consistent and easy to use set of commands which can be used to specify high
performance motion. The result is a calculator Llike language allowing the
application designer a great deal of freedom and power with which to solve
unigue application needs.

The approach taken is to utilize a set of single character ASCII commands fol-
lowed by an opticnal argument (number) and one or more single character ASCII
terminators. This syntax 1s as follows:

<command> [<argument>] #<terminator>#

The square brackets (L]) around the argument indicate that the argument 1is
optional. The pound signs (#) around the terminator indicate that multiple
terminators are allowed on some of the commands.

This approach allows convenient communications with virtually any commercially
available ASCII terminal or computer system. Moreover, the brevity of the
Language makes it both easy to use and requires a minimum of communications
overhead when interfaced to a host computer.

Like a programmable calculator, or a computer running interactive BASIC,
commands may be executed in the interactive mode or used in a "program'.

Because time is an important factor in most high pertformance motion control
applications, the language is designed to operate quickly, with most commands
requiring less than a millisecond and the longest commands requiring only a
few milliseconds maximum.

In addition, the PRG is architected to be able to service the real time
requirements of commanding a motion while simultaneously running this inter-
pretive language. This feature allows the PRG to perform necessary calcula-
tions to set up future motions while simultaneously performing positioning
tasks.

PRGOO1e -6- ORMEC

2.2 THEORY OF OPERATION

2.2 POSITIONING COMMAND LANGUAGE ARCHITECTURE

The architecture of the PRG positiening command language includes three major
groups of commands and terminators. These groups deal with MOTION, INTERFACE
and PROGRAMMING.

2.2.1 MOTION Commands and Terminators

The PRG creates motion profiles where the velocity is essentially trapezoidal
as illustrated below. For the motion to be generated, the parameters of
distance, velocity and acceleration must be specified. Since the PRG deals
with digital positioning servo systems, the parameters will be specified as
integer numbers referencing distance as counts, velocity as a frequency (Hz)
and acceleration as a freguency change per second (Hz per millisecond or kHz
per second). Each of these parameters is expressed as an integer value and
has an allowable range, as well as a default value. Refer to SECTIONS 6.2 and
6.3 for more detail regarding the parameter ranges. These parameters are
stored in the motion buffer, where they will be retrieved each time a posi-
tioning command occurs.,

casassesasssassasasssannsannaans V - top speed
. I - distance .
; (area under curve) -
. A - acceleration (slope) -

Typical PRG Motion Profile

The PRG also keeps track of positioning system location to a range of approxi-
mately + one billion counts, and is capable of returning that information to
the host or moving to absolute locations within that range.

In addition to storing parameters for distance, top speed and acceleration
rate, the PRG stores a home speed, a jog speed, and configuration information
which is contained in four 8 bit registers, identified as Status Registers
W,X,Y and Z. The status information is stored in the form of bit switches
that select various motion and communications options. The X Register also
contains information as to whether the servodrive is on or off, and therefore
can be used by the host system to tell if a fault has occurred.

Not only does the PRG allow host interaction while motion is being controlled,
but the host system can also ask the PRG for up to date status information
such as the present velocity, acceleration rate, absolute position, or
distance to go till the current index is complete. This information is called
motion status information and interaction with the motion buffer and motion
status information is jllustrated in the chart below.

PRGOOTe -7- ORMEC

2.2 THEQRY OF OPERATION
| I | |
| MOTION BUFFER | ! MOTION STATUS [
I | | |
| | | |

+=—=>| Index distance (1?) |———=—=— >| remaining distance (I!) |
| | | | |
U >>+--->| Acceleration rate (A?) |=-=—=—=— >| current Accel rate (A') |
S | I | | |
E +=—=>} run Velocity (Vv?) |--——+-—>| current Velocity (v!) |
R | | | | | wh |
>>+-—->| Jog velocity (J?2) |-——+ I HD |
1 | | | | | |
N +~-->] Home velocity (H?) |=—==+ |
T I I |
E >+—-->| Y Register status (S!) | [
R | | I
A
€ O e e >| absolute position (G!) |
T | I
I + -—— —— -—- ——————————— >| W Register status (S!)
0 I
N >>+ - T et >| X Register status (S!) |
| | |
+ -—— e >| Z Register status (S!) |
| |
| |
The PRG can parameterize the next motion profile while a motion 1is being

commanded because the user interacts with the MOTION BUFFER for setting up the

parameters for the next move. At the
takes the pertinent information from th

time each motion is commanded,
e MOTION BUFFER for the move.

the PRG

MOTION Commands and Terminators can be further classified as those which only
set up Parameters for motion control, and those which also deal with causing
Action. These two sets of commands are outlined below.

| |
I MOTION |
I |
I | I
P	Commands
A	
R	Velocity - set or examine maximum velocity rate
I A	Acceleration - set or examine acceleration rate
M	Status (W,Y) - set or examine motion status !
&	I
T	Terminators l
I e	I
R <cr> (carriage return) - enter new argument	
[s | I
I I I
PRGOO1Te -8- ORMEC

2.2 THEORY OF OPERATION

The following examples assume that the PRG is in its powerup {(default) mode.

Examples
Vv300<cr> - set the maximum velocity to 30.0 kHz
A3000<cr> - set the acceleration rate to 3000 Hz/millisecond
Swi3 - set the W register to 034 <(hexadecimal) which

transposes the meaning of + and - direction and
also reduces the top velocity to 48.00 kHz, in-
creasing the resolution of the acceleration and
velocity specifications

SY40 - set the Y register to 40y which selects the s—curve
acceleration type

with acceleration and velocity specified by the above parameter commands, the
distance may be specified by the relative Index or the absolute Go command.
The Jog and Home cemmands have indeterminate distences which will be deter-—
mined by future asynchronous events. j.e. Home will be terminated by an
encoder reference signal or a high speed sensor signal, and Jog witl be ended
by a future command to stop. These commands may be used to start ACTION as
well as specify parameters.

* {asterisk) stop motion

|

| MOTION i
| |
I l I
I | Commands |
J | Index - move relative to the current position f
| A I 6o - move to the absolute position f
| ¢ | Jog - move at the jog rate |
| T { Home - move until encoder reference or sensor |
| I |
| 0 | Terminators |
| N | + (plus sign) - start motion in positive direction |
! I - (minus sign) - start motion in negative direction |
| |]
| | |

Examples

1500+ - move 500 <counts positive relative to the current
position The motion actually starts when the + s
received.

I- - move negative from the current position by the
distance currently stored in the motion buffer

69306—<cr> - go to absolute location -9306

Ix - stop current motion

JG5+ - jog at 9.5 kHz in the positive direction

H1- - home at 0.1 kHz in the negative direction

J= - jog in the negative direction at the rate specified

in the motion buffer

PRGOG1e -9- ORMEC

2.2 THEORY OF OPERATION

2.2.2 INTERFACE Commands and Terminators

INTERFACE commands and terminators can be further classified as dealing with
Communications or Synchronization with real time events.

: (semi-colon) wait for motion to reach steady state

non-zero speed

I I
| INTERFACE |
| |
| | I
oo | I
| o | I
i M [Commands |
L I
| U | Normalize - select comm mode, reset, set position |
| N i Qutput - set Machine I/0 cutput condition i
i I ; Status (X,Z2) ~ set or examine control/communications status i
C
| A | Terminators |
| T | ? {question mark) - report motion buffer value |
| I I ! {exclamation mark) - report motion status value |
| o | I
I N f
s I
| I I
Examples

N* - Normalize the PRG (restarts the firmware)

NO- - Normalize the absolute position counter to -0

N3795+ - Normalize the absolute position counter to +3795

N<cr> ~ Normalize the MCC communications

0A - set the general purpose machine outputs to C(HHHL)

SX8 - set the lower three bits of the X Register to 000
| I
I INTERFACE |
I I
I | |
| | Commands |
I s | Delay - delay specified time interval]
| Y I Until - wait until specified condition is true |
N |
| C [Terminators [
B I
| | » (comma) - wait for motion to stop |
I I |
I | |
| I I

Examples
01000 - delay 1000 milliseceonds (1 sec)
D, - delay until motion is complete
UA - wait until condition A is true
D; - delay until steady accel is complete

PRGOO1e -10- ORMEC

2.2 THEORY OF OPERATION

2.2.3 PROGRAM Commands and Terminators

PROGRAM commands and terminators can be further classified as dealing with
manipulating the program Buffer or used for Control.

|
| PROGRAM |
I I
| I I
[8B | [
| U | Commands |
] Foo Program - enter, edit, or examine motion programs |
| F | a<label> - mark program Llabel I
| & | <esc> (escape) - exit program mode |
| R I Quit - terminate program space & exit program mode |
[| |
Examples
P<cr> - enter programming mode with the cursor at the end
of program space
PA - enter programming mode with the cursor at the be-
ginning of the "A routine"
P! - enter programming mode with the cursor at the be-
ginning of program space
P? -~ examine program space (from the beginning, a Line
at a time) changes are not allowed 1in this mode
a8 Startup - mark the beginning of the "3 routine" The 3 rou-
tine 1is a special user writeable routine which
executes whenever the power is applied, the system
is RESET, or the N* command is executed. The word
"Startup' is a user definable comment following the
program marker label @.
| I
I PROGRAM I
I I
I 1 I
| | Commands |
| ¢ | |
I 0 | Branch - conditional jump to program label |
N	Loop - repeat program segment specified number of times
T	Function - conditional call to a subroutine
R	Exit - conditional return from subroutine or program
o	
L	Terminators I
I	
	<cond> - branch condition (@ through 0)
I I I

PRGOO1e -11- ORMEC

2.2 THEORY OF OPERATION

. Examples

BA .~ branch unconditionally to the "A routine”

BBA - branch to the B routine on condition A

LA100 - loop back to the A label 100 times

FB - call function B; Program control returns te the

point where the function was called at the comple-
tion of the function.

E - mark the end of a function

ED - end the function on condition D

The , (comma) and ; {(semi-colon) terminators, covered in the INTERFACE group
are extremely important for use in synchronizing motion control programs with
high performance motion. They allow the user to set up new moves which
synchronize with moves which are underway, as well as coordinate Machine
Qutputs with the end of motion, or the beginning of a new constant speed.

When the PRG encounters either the , in a motion control program, it causes
the program to wait for the motion to end. If it finds a ;, the program will
wait for a new constant speed to begin.

When you start writing PRG positioning command language programs, it is impor-
tant to remember that these programs are designed to operate in "real time".
The PRG, when it powers up, defaults to the ECHO communications mode (control-
led by Status Register ZI) where it echos all characters of a PRG program to
. the MCC, 4if it is active. This feature, while useful for debugging PRG
programs, slows down the operation of the PRG depending on the baud rate of
the programming terminal (or the speed that the host computer receives charac-
ters from the MCC). 7To operate a program from the MCC, while not slowing down
PRG operation, use the SZ1 command. For details, see SECTION 6.5.

2.2.4 Error Codes

The PRG positioning command language checks for errors at execution time, and
when one is found, an error message is generated.

ERROR CODES

Format: # <error code> <bell>

Error codes

- Syntax error (invalid argument)

= Motion error

- Programming error (while editing or running)
- Miscellaneous error |

S Oom >

PRGOQ1e -12- ORMEC

3.1 SPECIFICATIONS

SPECIFICATIONS

3.7 ELECTRICAL SPECIFICATIONS

Power requirements +5VDC, 1.6A max
:ﬂZVDC, 0.1A (for RS-232 drivers)

CPU type 80854
speed 3.072 MHz
Program storage up to 16k bytes RAM or 2k bytes EEPROM
(optional)

ALL signals found at interfaces are assumed to be TTL level digital signals
unless otherwise noted. Schematics of the interfaces are found 1in the
APPENDIXES.

Parallel interface conforms to 1Intel MULTIBUS specification (Intel part
#9800683) for an intelligent slave; all signals TTL
compatible

MULTIBUS access 1/0 mapped to two adjacent 1/0 locations for 8 bit opera-
tion (16 bit CPU I/0 compatibility optional) The IORC'
and 10WC® control signals must be Low for tess than 25
usec.

Serial interface conforms to either EIA RS-232 or RS-422/449 with autobaud
for several standard rates between 19.2k and 300 Baud;
standard strapping is for Data Communications Eguipment
(DCE) i.e. a standard RS-232 terminal will communicate
with this interface

DPL interface uses RS-422 differential line drivers and receivers and is
compatible with all the ORMEC Motor Loop Controllers

High Speed Sensor Interface
all HSS signals must have durations of more than 2.4 usec
optocoupler specifications

input impedance

220 ohm typical

recommended input voltage ~ 0 - 5 volts
min assertion voltage - 2.8 volts

- 2.4 volts typical
min assertion current - 8.0 mA

- 5.5 mA typical
maximum input current - 25.0 mA

3.2 MECHANICAL AND ENVIRONMENTAL SPECIFICATIONS

Max dimensions 12" x 6.75" x 0.8"

Max weight one pound

Temperature range Operating 0 to +70 degrees €
Storage -25 to +125 degrees C

Relative humidity (w/o condensation) 0 to 90% :

PRGOOe -13- ORMEC

4.1 INSTALLATION

INSTALLATION

4.1 MOUNTING

The PRG can be custom mounted in an enclosure of the user's design or plugged

into a MULTIBUS card cage. Mounting holes are provided at the corners of the
printed circuit board as shown in APPENDIX 8.2Z.

4.2 ELECTRICAL INSTALLATION

A typical PRG configuration is diagrammed in APPENDIX 8.3. The signals termi-
nated on each connector are described in the following interface sections.

The +5 VDC power s supplied through the JMT connector. For pin assignments
see SECTION 4.3. The +12 vDC power is supplied through either the JM1 connec-
tor or the JM&4 connector. - For pin assignments see SECTION 4.3 (IM1) or
SECTION 4.4 (JM4).

4.3 PARALLEL MOTION CONTROL CHANNEL (JM1 OR JM&)

The parallel motion control chanmel follows the information transfer protocol
of the MULTIBUS. This protocol is asynchroncus and is implemented using the
following MULTIBUS signals.

ADDRESS LINES O through 7 {select two adjacent locations)

DATA LINES 0 through 7

INTERRUPTS 0 through 7 {(select one)
I0RC

I0WC

XACK

This protocol is suitable for parallel communications with other computer
systems as well by using a paraltel I/0 interface. For detailed information
on this subject refer to the Intel publication "Intel MULTIBUS Specification”
(Intel P/N 9800683).

For user convenience, these signals are &also brought out to JM6, which is a 26
pin PC edge connector suitable for mass cable termination. The pinout is
designed to be compatible with the MOSTEK STD Bus Parallel I/0 (P10) interface
board, to which ORMEC has implemented a hardware and software interface.

Signals and pin assignments for both JM1 and JM6, as well as a 25 pin D-Series

which mates with JM& are Listed in the following tables. A schematic for this
interface is in APPENDIX 8.6.

PRGOO1e -14- ORMEC

4.3

PARALLEL MOTION CONTROL CHANNEL

INSTALLATION

e ———— == -4 - e —————— t+
| MULT IBUS | | | D SERIES CONNECTOR|
| MNEMONIC | JM1 | JMé | for JM6 [
pom e + -+ - + -— +
| INIT! | 14] NC | NC |
| IORC' | 21 | 13,21 | 7,11]
| I0WC" | 22 | 3,14 | 2,20 |
| XACK" E 23 % 25 1 13 =
I
| ADRO' | 57 | 20 | 23 |
| ADR1" | 58 | 4 | 15 I
ADR2'	55	15	8
ADR3"	56	16	21
ADR&G'	53 I 17	9	
ADRS'	54	18	22
ADRG	51	19	10
ADR7'	52 22	24	
ADR8"	49 NC	NC	
ADRS"'	50	NC	NC
ADRA'	47 NC	NC	
ADRB’	48	NC I NC {	
I			
DATO'	73 12 19		
DAT1!	74 11 b		
DATZ2'	71	10 i 18	
DAT3!	72	9 5	
DAT4"	69	8 17	
DATS'	70	7	4
DATS!	&7 I 6	16	
DAT7'	68 5 3 I		
I			
GND 11,2,11,12,75, 2,24 14,25			
[76,85,86		
+5vDC	3,4,5,6,81,	NC i NC	
	82,83,84		
+12vDC i 7,8 NC NC			
-12vDC	79,80	NC I NC	
o + -— —-—t—— +- — +			
o ————dm pmmm e ——— pm— pmm e —————— +			
muLTIBUS			J8
MNEMONIC	JM1	JmMé	STRAPPING
e ————————— tmm——————— tm———— R Ratad D St ————— +			
INTO®	41	26	49-50
INTY!	42	26	51-52
INT2!	39	26	53-54
INT3? I 40	26	55-56	NC 5
I I I I			
INT4'	37	26	57-58
INTS! I 38	26	59-60	NC
INTG!	35	26	61-62
INT?7!	36	26	63=64
t———— - += - temm—————— +- fm———————————— +
PRGOO1e ~15~-

ORMEC

Since a single PRG only reguires two address locations,
connected together on the same paraiiet channel.

address which can be selected from the following table:

+ ______________
| MULTIBUS
{ DATA STATUS
S S
[02y | o34
| 06y | g7y
| OAy | OBy
i OEy l OFK
| 124 | 13y
| 164 | 174
| 1Ay | 1BH
’ 1EY | 1FH
| 22y | 234
| 26y | 274
| 2A4 | 28H
{ 2EH ’ 2FH
| 324 | 334
| 364 | 374
| 3Ay | 38
{ 3EH 1 SFH
| 42y | 43y
| 46y | 47y
| 4Ay | 4By
{ 4EH ‘ QFH
| 524 | 53y
| 564 | 574
| 5A4 | sBH
! SEy SFH
| 62y 63H
| 66y 67H
| 6Ay 68H
I 6EH 6FH
| 724 | 734
| 764 | 77H
| 7A4 | 7BH
| T7Ey l 7FH

PRGOOTe

PARALLEL MCC ADDRESSING TABLE

+——

J8
STRAPPING
——————— +——____
47-48 | 31-32
45-46 | 31-32
43-44 | 31-32
41-42 | 31-32
39-40 | 31-32
37-38 | 31-32
35-36 | 31-32
33-34 i 31-32
47-48 | 29-30
45-46 | 29~30
43-44 | 29-30
41-42 | 29-30
39-40 | 29-30
37-38 | 29-30
35-36 | 29-30
33-34 | 29-30
47-48 | 27-28
45-46 | 27-28
43-44 | 27-28
4142 l 27-28
39-40 | 27-28
37-38 | 27-28
35-36 | 27-28
33-34 | 27-28
47-48 | 25-26
45-46 | 25-26
43-44 | 25-26
41-42 | 25-26
39-40 | 25-26
37-38 | 25-26
35-36 | 25-26
33-34 | 25-26
+

-_1 6_

+ ______________
| | mULTIBUS
| | DATA STATUS
~4 pm————— o ————
| | 82w | 83y
| | 86K | 87H
| | 8AH | 8BH
8EH 8FH
bl 920 | 934
Q6H Q7Y
9AH 9BH
9EH 9FH
| | A24 | A3y
| | A6y A7H
| | AAj ABH
! AEH AFH
| | B2H | B3
| | B6H | B7H
| BAH BBH
] BEY BFH
[| c2y €3H
| [cén C7H
| | cAq | ¢BH
1 | CEH CFH
| | b2y | D3y
| 1 oéx | ©7H
| | DAy | oDBH
DEH DFH
EZH E3H
E6&H E7H
| | EAH | EBH
EEH EFH
| | Fen | F3y
| | Fén | F7H
FAH | FBy
FEH | FFH
-+ pm————— o

_— - —— 4

e e ————— ——— e e

INSTALLATION

|
|
|
|
|
|
|
|
I
|
I

_______________ +
J8
STRAPPING
_______________ +
47-48 | 23-24
4546 | 23-24
43-44 | 23-24
41-42 | 23-24
39-40 | 23-24
37-38 | 23-24
35-36 | 23-24
33-34 | 23-24
47-48 | 21-22
45-46 | 21-22
43-44 | 21-22
41-42 | 21-22
39-40 | 21-22
37-38 | 21-22
35-36 | 21-22
33-34 ‘ 21-22
47-48 | 19-20
45-46 | 19-20
43-44 | 19-20
41-42 , 19-20
39-40 | 19-20
37-38 | 19-20
35-36 | 19-20
33-34 | 19-20
47-48 | 17-18
45-46 | 17-18
43-44 | 17-18
41-42 | 17-18
39-40 | 17-18
37-38 | 17-18
35-36 | 17-18
33-34 | 17-18
+

multiple units can be
Each PRG must have a unigue

ORMEC

4.3 INSTA{LATION

Note: For eight bit addressing, (factory standard) strap J8 (15-17) otherwise

U47 (INTEL D3205) must be inserted and the upper four bit addresses
(ADRB — ADR8) are selected as follows:

= —— o —————————— +
| High Order | J8 I
| Address | STRAPPING |
| (ADRB'-ADRB') | I
e e e o et et +
] don't care | 15-17 |
| I J
I Oy | 15-16 |
I Ty | 13-14 |
| 2y | 11-12 |
JI 3y 9-10

| by I 7- 8 I
i SH I 5- 6 |
| by | 3- 4 |
| 7y I 1- 2 |
e e +

The DATA address is used to write or read a data byte to/from the PRG (MCC
channel)., Writing to the STATUS address does a hardware reset of the PRG
board. Reading the STATUS address will return a byte with the Lower four bits
as follows:

bit O = PRG (MCC Channel) input buffer full'
bit T = PRG (MCC Channel) output buffer empty'
bit 2 — MOTION' (same as JM2-13)

bit 3 - READY' (same as JMZ2-T1)

The PRG (MCC channel) output buffer full signal can be strapped to trigger an
interrupt as shown above. Therefore, the PRG can interrupt the host computer
whern it has an output character, rather than the host continually polling the
PRG status.

4.4 SERIAL MOTION CONTROL CHANNEL (JM4)

A ZM or equivalent 26 pin female mass terminatien PC edge connector with .1
inch finger spacing will mate with connector JM4, The connector strapping
configurations and pin assignments are shown in APPENDIX 8.4. As can be seen
in the APPENDIX, this interface is configurable with EIA Standards RS-232, RS-
4227449, and RS-423/449. Further it can be strapped teo be either a DCE or a
DTE device for both RS~232 and RS-449. As it is shipped from the factory, it

is strapped for R§-232 DCE with no handshake, to work with a standard
terminal.

Note that pin 26 is unused since this connector is compatible with 25 pin "D-
Series" connectors. Also note that the pin numbers shown below correspond to
the numbering system used for connector JM4 and will be different for D-Series
connectors (R$=-232). SECTION 4.8 has a mapping of 26 pin edge connector to 25
pin D-Series c¢onnector numbering.

A Serial Motion Control Channel wiring diagram and strapping configuration for
header connector J7 is found in APPENDIX 8.4,

PRGOO1e -17- ORMEC

4.5 INSTALLATION

4.5 DIGITAL POSITION LINK INTERFACE (JM3)

The DIGITAL POSITION LINK INTERFACE is the interface with the ORMEC Motor Loop
Controller, and it is designed to utilize a mass termination connector. A 3M
or equivalent 26 pin female mass termination PC edge connector with .1 inch
finger spacing will mate with connector JM3. ALl descriptions of the DPL use
the 25 pin "D~Series"” connector pin assignments, and therefore the following
table references these pin numbers rather than the PC edge connector numbers.
Refer to Section 4.8 for a mapping of 26 pin edge connecter to 25 pin “D-
Series" connector numbering. Note that PC edge connector pin 26 is unused to
maintain compatibility with a 25 pin D=Series connector. A schematic for this
interface 1is in APPENDIX 8.7.

Signal Name "p—Series" Description
Pin #
COMMON 2,15 power and logic signal common
FORWARD COMMAND 24 Each high transition of FWDCMD causes the Load
FORWARD COMMAND' 11 to move forward one encoder distance wunit.

(digital output)

REVERSE COMMAND 25 Each high transition of RVSCMD causes the load
REVERSE COMMAND' 12 to move backward one encoder distance wunit.
(digital output)

RESET 23 A high state of RESET zeroes the error tfault
RESET' 10 detection circuit and holds the digital error
summer contents at zero. (digital output)
POSITION LOOP DISABLE 17 A high state of PLDIS disables the position
POSITION LOOP DISABLE' 4 loop while allowing the system to operate in a
velocity controlled mode. (digital output)
DRIVE DISABLE 18 A high state of DRVDIS will disable the buffered
DRIVE DISABLE' 5 DRVON output which is used to operate the '"loop

contactor'” and or the power to the servodrive.
In addition, DRVDIS reduces the loop gains 1in
both the position and the velocity loops to zero
by shorting the outputs of the respective sum—
ming operational amplifiers to their respective
summing junctions. It also resets the integra-
tors 1in the respective integral + proportional
compensators if used. (digital output)

DRIVE OFF 9 A high state of DRVOFF indicates that a tault

DRIVE OFF' 22 has been detected or DRVDIS is high. (digital
input)

ENCODER REFERENCE 6 ENCREF 1is the unprocessed cutput from the digi-

ENCODER REFERENCE" 19 tal position encoder reference output. Gif

implemented)

PRGOO1e -18- ORMEC

4.6 INSTALLATION

4.6 MACHINE 1I/0 INTERFACE (JM2)

The MACHINE 1/0 INTERFACE is provided to altow the PRG to interface directly
with the outside world. Standard uses of this interface, as can be seen from
the table below, are to handle Limit switches, a hardware "STOP/BREAK" com-—
mand, and to provide user information as to whether the servomotor is in
motion and whether or not the PRG is ready to accept a new command. In
addition, user programmable inputs and outputs are provided. The MOTION
ROUTINE ADDRESS inputs allow interface with equipment such as Programmable
Controllers, by allowing them to access previously stored Motion Control
Programs using standard I/0 points.

A 3M or equivalent 50 pin female mass termination P{ edge connector with .1
inch finger spacing will mate with JMZ2. It provides standard user inputs and
outputs which are OPT0/22 compatible. A schematic for this interface is in
APPENDIX 8.5.

MACHINE I/0 INTERFACE (JM2)

I/O_g JMZ2 Pin# DRIVER STANDARD PROGRAM Option
49 +5 VDC +5 VbC .
0 47 reserved IND' |
1 45 reserved INT' | input
2 43 i - reserved IN2! | nibble
3 41 N reserved IN3' |
P
4 39 U reserved EXECUTE®
5 37 T - =-LIMIT! =LIMIT!
6 35 S +LIMIT! +LIMIT?
I 33 STOP! STOP!
8 31 FORWARD" FORWARD®
? 29 0 U3 ADECEL' ADECEL"'
10 27 u MOTION' MOTION'
1M1 25 T READY? READY'
P
12 23 v ouTo! ouTo" B
13 21 T U4 OUT1' nibble ouT1! output
14 19 S OUT?Z2' output out2! nibble
15 17 ouT3! ouT3! _
16 15 reserved ADRO! -
17 13 us reserved ADR1!
18 11 1 reserved ADR2' |
19 9 N reserved ADR3! motion
p routine
20 7 U reserved ADR&G' | address
21 5 T reserved ADRS? |
22 3 S ué reserved ADRG' |
23 1 reserved ADR?! _
ALL even pin numbers are grounded.
PRGOO1Te -19- ORMEC

Signal Name

bits 0UT3* - ouTO'

READY'

MOTION'

ADECEL'

FORWARD'

STOP'

+LIMIT!
-LIMIT®

EXECUTE"

bits ADR7' - ADRO'

bits IN3' - INO'

PRGOO1Te

INSTALLATION

MACHINE I/0 INTERFACE

Description

output nibble set by the Out command; refer to 1/0 Condi-
tion Table in SECTION 6.6 (digital output)

a low state of READY' indicates that the PRG is ready for
the next command (digital output)

a Low state of MOTION' indicates the system is in motion
(digital output)

a Low state of ADECEL' indicates that the system is
accelerating or decelerating; a high state indicates that
the system is at top velocity or at rest (digital output)

a Low state of FORWARD' indicates that the system 1is
moving in the forward direction; a high state indicates
that the system is moving in the reverse direction (digi-
tal output)

a Low active input will stop the system motion and cause
the PRG to return to the READY state i.e. abort any
other activity taking place and return to the interactive
command Level (digital input, 4 milliseconds minimum)

low active inputs that will stop the system motion; only
a motion command in the opposite direction will cause
system motion when either '+' or '-' LIMIT' is asserted
(provided for Limit safety switches on X-Y tables) (digi-
tal inputs, 4 milliseconds minimum)

{programming option} a high to Low transition will start
execution of the pre-programmed routines addressed by the
Motion Routine Address (bits ADR7' - ADRO") (digital
input, 1 millisecond minimum)

{programming option} Motion Routine Address bits which
address the pre-programmed subroutine in the program
buffer upon an asserted EXECUTE' signal; these eight
address bits correspond to those of the program marker
byte (digital inputs)

{programming option} Input Condition bits used by the
conditional Branch, Exit, and Function commands ; refer
to the I1/0 Condition Table in SECTION 6.6 (digital in-
puts)

=20~ ORMEC

4.6 INSTALLATION

The output conditions shown in the I/0 CONDITION TABLE (SECTION 6.6) require
that an inverting driver is inserted in socket U4. A 74LS00 driver is sup-
plied with the board although the following chart indicates other pin compat-
ible drivers:

$omm o + o —————— - m——— —-—
f TTL | OUTPUT| PULLUP | CURRENT Sink/Source (mA)| 0/¢C |
| DRIVER | BUF/INV{ TYPE | Stnd | LS | S | VOLTAGE |
Fom————— o= F—————— fo—————e = +- o ———— +
| 74x00 | 1INV | Active | 16/0.4 | 8/0.4 | 20/1.0 | - |
| 74x03 | I1Nnv | o/c | 16/ - | 8 - | 20/ - | 5V |
| 74x08 | BUF | Active | 16/0.8 | 8/0.4 | 20/1.0 | - {
| 74x09 | BUF | 0/c I 16/ - | 8/ - ! 20/ - I 5y I
I | I |

74x26	INV	o/c	16/ -	8/ -		15V
74x32	BUF	Active	16/0.8	8/0.8	20/1.0	-
74x37	INV	Active	48/1.2	24/1.2	60/3.0	-
74x38	INV	o/C	48/ -	24/ -	60/ -	SV
Fmm - tmm————— Fo—r———— o ——— Fomm———— fo— e ———— fm————————— +

INV = Inverter BUF - Buffer 0/C -~ Open Collector

Hardware Motion Address Configurations

The following two tables can be used to select 32 or fewer motion control
routines from hardware signals on the MIO. The first table demonstrates the
signals required at connector JM2 for programs labeled @ through , including
the alphabet (in capitals). The second set of tables demonstrate 2 method for
selecting programs labeled 0-9 with a standard thumbwheel switch,

PRGOOTe -21- ORMEC

4.6 INSTALLATION

Sample Hardware Motion Routine Addresses

1f 4, 8, 16 or 32 motion control routines are sufficient for the application,
then 2, 3, 4 or 5 Motion Routine Address lines respectively are connected as
shown below. The unused Lines on the Lleft side of the table are Left uncon-
nected if designated High (pullup resistors assert a high Llevel) or grounded
if designated Low.

m—————— . — ——— +
	Motion Routine Address
Program	
Label	ADR7 ADR6 ADRS ADR4 ADR3 ADR2 ADRT ADRO
	Jm2- 1 3 5 7 9 11 13 15
$mm——— B T o e +	
[@ 40y	H L H H
A Gy	H L H H
B 42y	H L H H
¢ U3y	H L H H
+ e ——— t—————————— 2========== +
| D 44y | H L H H | H L H Ho|
| E (45 | H L H H | H L H L |
| F (bbyy | H L H H | H L L H

[6 47y | H L H H | H L L L

Fmmm——————— fmmm——— —_— _— + -3 +
| H 48y H L H H | L H H H

| T 49y H L H H | L H H L

[J A H L H H | L i L H

{ K (4By) H L H H L H L L

L Gy H L H H	L L H Ho	
M C4Dy)	H L H H	L L H L
N GhEy) H L H H	L L L H	
0 (4Fy) H L H H	L L L Lo	
tm—————————— e ——— - 4 +		
P (50	H L H L	H H H Ho
I @ Gy	H L H L	H H H Lo
R (52	H L H L	H H L H
{ § (53	H L H L H H L L I	
T Gay	H L H L H L H Ho	
U S5y	H L H L H L H L	
[v 56y	H L H L	H L L Ho
l W (57 1 H L H L H L L L		
X (58y)	H L H L	L H H OH
Y 5%y	H L H L	U H H L
[7 GAgp	H L H L	L H L Ho
i L By	H L H L L H L L	
[\ Gy	H L H L	L L H H
3 Goyy	H L H L] L v H L	
~ GEy)	H L H L	t L L Ho
_ GFyy	H L H L	L L U L
+ -+ m——————————— [T === +

(H)igh TTL Level (LYow TTL Llevel

PRGOO1e -22~ ORMEC

BCD Thumbwheel Switch Configuration

INSTALLATION

The following table can be used for selecting ten motion control routines from

a standard single digit binary coded decimal thumbwheel switch.

The second

table outlines the configurations and wiring diagram for an implementation
with a common thumbwheel switch.

+- : — —— - +
| | Motion Routine Address |
| Program | |
] Label ADR7 ADRG6 ADRS ADRS4 ADR3 ADRZ2 ADR1 ADRO [
| JMz- 1 3 5 7 9 11 13 15 |
$m———— + e + - +
0 G0yy	H H L L] H H H H
1 Gy H H L L	H H H L
2 G2y H H L L	H H L H
3 33y, H H L L	H H L U
I 4 Bhy) H H L L H L H H	
5 354	H H L L
6 (3éy)	H H L L
7 GB7y	H H L L
8 (38	H H L L
9 G9%) H H L L	L H H L
femmm e + -- - e ——— +	
(H)igh TTL Llevel (LYow TTL Level	
ADRO ADR?Z GND ADRS ADR7	
ADR1 ADR3 ADR4 ADR6 oo -	
JMz- 15 13 M ? 8 7 5 3 1	
e A ¥ e ¥ ' Attt Vit Vit Vit Vit iteh	
v v v v v v v NC NC	
+ + + + + +
| WHEEL 1 2 4 8§ ¢ |
{ i
| 0 x|
| 1 X x|
| 2 X x|
| 3 X X x|
| 4 X x |
| 5 X X x|
| 6 X X x |
| 7 X X X x |
| 3 x |
| 9 X x x|
| l
| x - indicates signal |
! connected to Common i
| C&K Components, Inc. |
i Thumbwheel Switch |
| Section Types: 21,27,31 I
+ - +

PRGOO1e

-23-

4.6 INSTALLATION

4.7 HIGH SPEED SENSOR L/0 INTERFACE (JM5)

The high speed sensor 1/0 interface allows optical isolation or use of RS-422
differential line drivers and receivers for high speed sensors used for the
coordination of motion with respect to external events, as well as coordina-
tion of multiple PRG's in a single application. The circuitry and strapping
for this interface is found in APPENDIX &.7.

The two optically coupled isolators have high bandwidth to allow much faster
input than could be achieved through OPT0 22 compatible modules. In addition
they are tied directly into the pulse generating hardware of the PRG, rather
than going through the overhead of the CPU, for accurate control of external
event driven functions such as "SENSOR Accelerate', "SENSOR Decelerate" or
"SENSOR Stop'. See the Y-Register bits of the Status Command in the OPERATION
Seclion.

In addition to the SENSOR' input, there is also an External Reference input
(EXTREF"), allowing the PRG to have motion that is referenced to the motion of
another system, rather than to the internal crystal controlled clock. Another
advanced capability associated with the HIGH SPEED SENSOR INTERFACE is the
ability for a PRG to place its output pulses (independent of system direction)
on a Distance Referenced pulse bus (RS-422 compatible) which is on pins 7 and
8. For a description of the X-Register bits of the Status Command, see the
OPERATION Section, and for a discussion of distance referenced motion, see
SECTION 6.4.

RS-422 compatible differential Lline receivers (U13) are also available to be
used to interface to the SENSOR' and/or the EXTREF' inputs, if desired.

PRGOD1e 24~ ORMEC

4.8 INSTALLATION

4.8 MAPPING OF PC EDGE CONNECTOR (26 pin) TO D-SERIES (25 pin)

25 pin D-Series connectors are compatible with 26 pin PC Edge Card connectors
with the exception that their pin numbering systems are different. To help
eliminate confusion on this issue, these mappings between the two connector
types are included in this manual.

e R et + e e +
| PC Edge | 25 pin | | 25 pin | PC Edge |
| Conn | D-series | | D-series | Conn |
fmmm e o + T e e ——————— +
| 1 I 1 | | 1 1 1 I
I 2 l 14 l | 2 | 3 I
I 3 I 2 | | 3 | 5 |
| 4 | 15 I | 4 i 7 |
I 5 | 3 | | 5 9 |
i	l		
6	16		6 ! 11
7	4 I	7 13	
8	17		8 15 I
I 9	5		9
10 i 18 I ! 10 19 {			
I | |

| 1 | 6 | | 1 | 21 I
12	19		12	23
13	7 [13	25	
14	20		14	2
15	8		15	4
I			i	
16	21		16 i 6	
l 17	9		17	8
18	2¢e		18 J 10 [
19	10		19 ! 12	
20	23 f ’ 20 I 14 {			

| 21 | 11 | i 21 I 16 l
| 22 | 24 | | 22 | 18 |
I 23 l 12 | | 23 | 20 |
| 24] 25 | | 24 | 22 [
l 25 | 13 I | 25 | 24 |
| 26 | NC I | NC | 26 |
e o e + pommm i ———— e ————— +

PRGOO1e -25- ORMEC

5.0 GETTING STARTED

GETTING STARTED

No adjustment and setup are required with the Position Reference Generator
other than the strapping options described in the INSTALLATION Section.

wWhatever your planned interface to the PRG, it is recommended that for getting
started, you interface an ASCII terminal to connector JM4 to Llearn the PRG
Positioning Command Language. The PRG comes from the factory with this
connector configured as an RS-232C DCE with no handshake, and it therefore
should be compatible with most ASCII RS-232C terminals. See APPENDIX 8.4 for
alternate strapping configurations of header connector J7.

After your MLC is installed according to the procedure in its manual, you
should attach the DPL cable between the MLC and the PRG connector JM3. Also
attach your ASCII terminal to connector JM4, and provide power to the system.
The terminal should be configured for one of the following baud rates: 19.2k,
9600, 4800, 2400, 1200, 600 or 300.

when power is apptied to the PRG, the on-board microprocessor searches through
the program space to attempt to find a startup routine. The startup routine
is a user defined positioning command Language program using the program Llabel
@ (ASCII 40y). 1In addition, the PRG continually checks back and forth between
the parallel and the serial interfaces to see if either interface is attempt-
ing to get control., If a character is received at either interface, the PRG
examines this character to determine if it is a carriage return (ASCII 0Dy,
From the parallel interface, control is gained by simply sending the PRG a
carriage return.

Gaining control from the serial interface is more complicated in that there
are several acceptable terminal baud rates. The PRG will automatically deter-
mine the baud rate by starting with its serial interface configured for 19.2 k
baud, and if a character is received which is not a valid carriage return, the
PRG will halve its baud rate to 9600. When the next character is received, it
is examined by the PRG and if it is not a valid carriage return, the PRG will
again halve its baud rate. This is repeated up to seven times allowing baud
rates from 19.2k to 300. If avalid carriage return is received, control is
given to the serial interface. Normally, the PRG is in a fast scan loop
alternately checking the parallel interface and the serial interface for
inputs, however once any character is received at the serial interface, 1.7
seconds are allowed for the sequence of up to 7 tries before the PRG again
checks the parallel interface.

Therefore, to initiate communications with the PRG, you must provide informa-
tion for the PRG to determine the terminal baud rate. This is done by repeat-
edly pressing the carriage return <cr> enough times for the PRG to recognize
it within a 1.7 s2cond time period.

when control is gained, the PRG will respond with the code for its firmware,
followed by a "prompt" of =>. The rest of this section assumes that the PRG
is using the standard programming firmware (PRF121c or PRF131¢c). At this
point, the PRG is operating in its interactive mode, and is ready to accept
commands. Ffor a review of the command architecture, consult SECTION 2.2, and
for a detailed and precise description of the commands, consult SECTION é.5.

PRGOO1e -26- ORMEC

5.0 GETTING STARTED

Assuming no startup program was encountered in the user programmable non-
volatile memory, setup parameters in the motion buffer are now at their de-
fault values. For a list of the default values, see SECTION 6.2. To check
the values of these parameters try the sequences found below. In the sequen-
ces listed, bold print indicates the sequence that you type, and the regular
print is the information sent by the PRG.

PRF131c

=>1? 0500 ~ index distance is set to 500 counts

=>V? 0400 - top velocity is set to 40.0 kHz

=>A? 4000 - acceleration rate is set to 4000 Hz/millisecond This

information tells you that if you execute an I+ command,
the PRG will send a pulse train of 500 counts to the MLC
which ramps up to 40.0 kHz at a rate of 4000 Hz/millise-
cond, and then ramps down from 40.0 kHz at 4000 Hz/mil-
Llisecond. Altogether this index lasts for about 23
milliseconds.

=>1I1<cr> 0440 #B4 attempting to set an index distance of 1 count results
in a B4 error because the move distance is too short for

the specified top speed and acceleration rate

=>I? 0500 - the index distance in the buffer is still set to 500
counts because of the error on the attempt to change it
=>I+ - the motor should index 500 counts in the positive direc-

tion; You will notice that the PRG did not send another
prompt, because you are still in the I command. Typing
another + will result in another positive move of 500
counts, and typing - will result in a negative move of
500 counts. The I command can be terminated with a
carriage return <cr>.

Let's reset everything back to its default setting and examine the rest of the
default parameters. To do this, terminate the I command with a <cr>, and then
type N*.

=>N* - normalizes the PRG

=>H? 20 - Home speed is set to 2.0 kHz

=>J? 0100 - Jog speed is set to 10.0 kHz

=>G6? 00 ~ the absolute position counter is set to O

Let's try the jog command:

=>J- - the system should now be "jogging" at a speed of 10.0
kHz; Note that the PRG did not send another prompt
because you are still in the J command. Type any char-
acter at this point to stop the servomotor. You are
still in the J command, but now the only characters that
can be typed without soliciting an error from the PRG
are the B = . and <cr>. The + will
cause motion to start again in the positive direction,

PRGOO1Te -27= ORMEC

5.0 GETTING STARTED

at which time any character will again stop the motion.
The - will cause motion to start again in the negative
direction, at which time any character will again stop
the motion. The , will cause a ">" character to be
returned from the PRG because the system is not in
motion at present, and the <cr> will terminate the jog
command.

Try the sequence below and observe the results.
=>J=—t+ , D>====<lcr>
Try some other jog sequences using the above terminators.

You may note that the effect of the , terminator is to return you to the
beginning of the J command (as though you had just typed J) and typing <cr>
immediately thereafter will result in a #A2 error. The , and the ; termina-
tors can be used by a host computer to determine when motion is complete or a
new constant speed is reached. They are also useful in a motion control
program for synchronizing the program with motion which is underway. For more
detail on this, see SECTION 2.2.

Some other interesting things can be done with the J command, by returning to
the command mode while the servomotor 1is still "jogging". The definition of
jogging is just "running until told to stop” and it can be done at any speed
that the system 1is capable of running.

Let's try this sequence:

=>N* - normalize the system

=>J+<cr>

start the system jogging and return to command mode

=>J5+<cr> change the jog speed to .5 kHz and jog at that speed

=>J50<cr> change the motion buffer jog speed to 5.0 kHz

=>J?7 50 examine the motion buffer jog speed

=>J' 05 the actual jog speed is still .5 kHz at this point

=>J- jog at 5.0 kHz in the negative direction

=>A1 change the acceleration rate to 1 kHz/sec

=>J100- jog at 10.0 kHz in the negative direction; It will take
about 5 seconds to reach this speed because of the very
Low acceleration rate.

=>J=* stop the motion

=>J+ jog at the last speed in the positive direction

=>N#* normalize the system (stops fast since A=4000)

Let's examine the state of the Status Registers.

=>S§! 000F0000

PRGOO1e

- note that to examine the Status Registers, the ! was

required This is because the status registers, other
than the Y Register, are not in the MOTION BUFFER but
are an inquiry into the current status of the PRG. The
first two characters indicate the status of the W Regis-
ter (in ASCII hexadecimal), the next two the X Register,
followed by the Y and Z Registers.

-28= ORMEC

5.0

GETTING STARTED

For a detailed discussion of the Status Registers, see SECTION 6.8.

Try some other Status

=>SXE

=>SXF

=>SY40

=>N-

=>12000—-<cr>

=>I——=<cr>
=>G!-010000
=>G65+

Register commands.

disable the position loop; At this point you can turn
the shaft of the servomotor a few degrees, since the
position loop is not active.

enable the position loop; The shaft should spring back!

enable the s=-curve acceleration; If you use an oscillo-
scope to observe the tach signal, you will see that the
acceleration is no longer Llinear.

normalize the absolute position counter to -0

index 2000 counts in the = direction

-2000 counts four more times; Don't try to
is still moving,

index
initiate a new index while the system
or you'll get an error message!

your system is now at =-10,000 counts; You did five -

2000 count indexes, remember?

go to absolute lLocation +65

PROGRAMMING

Now lets try writing a motion control program.

=>p!
Q

Assuming that a Q@ was

@A TEST PROGRAM<cr>
A4000.

v100.

1500. .-

0300,

PRGOOTe

go into program mode and put the cursor at the beginning
of programming space; If your program buffer is clear,
your PRG should have typed a Q@ as shown. If there is
something other than a Q there, then someone has been
programming your EEPROM! You can review what they put
there by typing successive linefeeds (usually LINEFEED
or LF on most ASCII terminals). Typing lLinefeeds if
there is a @ there will have no effect, since that Q
marks the end of program space.

there, let's proceed.

you overtype the @ with @A, which lLabels routine A; The
rest of the Line until the <cr> is a comment.
hranch mranAds+inanal luy +a rAatimas A VAauiir cuctam chail A
M driwan (" IR ARV LW By By IUIlﬂLL; Lo =) T e 1i1¢C ﬂ’ [A=1 g) DIDLCIII =R R AT A Ry)
now be indexing back and forth 500 counts.

-29=- ORMEC

5.0 GETTING STARTED

Note also the 300 millisecond delay in between indexes.

It is good programming style to set the acceleration rate and top velocity so
that no matter what they might be when this routine starts, it will still
execute predictably. It is possible to set them in another routine first
however, and then call this routine from the other.

The periods are used to reserve space to increase the size of those parameters
at a future date by editing the routine.

Let's edit the program to increase the delay to 600 msec.

=>PA

@A TEST PROGRAM type Linefeed <Lf> and the cursor will move down a Lline
A4000. type <Lf>

v100. type <Lf>

1500..- type <Lf>

D300, type <tab>; The cursor is now on the 3 and so you can

overtype it with a 6. You can also back up a character
by typing a backspace <bs> or a delete . 1If you
back up beyond the first character in a Line the cursor
will move back to the first character in the previous
line, and the PRG will type that Lline. In this way, you
can move the cursor around program space until you find
the area you want to overtype, and then modify it. When
fininshed editing, type the escape <esc> key, and you
will return to the interactive mode, signified by the =>

"READY" signal.
To run the modified program, type BA<cr> again.
You now have an introduction to the PRG's capabilities, and to Learn more,
study the positioning command language architecture in SECTION 2.2 or the

commands in the OPERATION Section.

ORMEC has a design aid available, called the Machine Interface Simulator
(MIS), which will facilitate learning about the possible uses of the Machine
1/0.

PRGOO1Te -30- ORMEC

6.1 OPERATION

OPERATION

6.1 OVERVIEW

The PRG is controlled or programmed by sending commands through the Motion
Control Channel (MCC). These commands specify control parameters, request
display of information, or effect system motion. Each command is started with
a single ASCII character indicating the command type. The command then con-
tains an optional argument, and one or more terminators. The command language
architecture is described in SECTION 2.2 and a full command description is
found in SECTION 4.5.

The PRG will send an ASCII "greater-than'" (>) character whenever it is READY
for another command. The status of DRVOFF' is indicated by the top bit of the
READY character. Therefore the READY character is 03EQ if the drive is off

and OBEy otherwise (normal operation). This provides a convenient way for a
host computer to check for a fault at the Motor Loop Controller (MLC).

A "number sign" (#) character (023y) followed by a two character error code
will be sent to the MCC whenever an error is detected. Refer to SECTION 6.7

for definitions of these error codes.

The following symbols are used in the remainder of this section:

<token> = variable item

L] = optional enclosed item

= repeatable enclosed item

{ } = programming option enclosed item

| = OR operator

The general format of a command is:
<command> [<argument>] #<terminator>#

where: <command> - single alphabetic character
<argument> - alphanumeric
<terminator> - non alphanumeric

This command character can be upper case e.g. A(41H) or lLower case e.qg.
alé1y)., The top bit is set to indicate that a binary argument is to follow.
However, binary arguments can only be used if they have been enabled by the 7
Register, bit 2 (BINMCC). For more detail on binary MCC communications, read
the Status command description in SECTION 6.5. The argument is often optional
and necessary only when required by the syntax of the command. Multiple
terminators are possible to modify the current command where appropriate.

PRGOO1e -31- ORMEC

6.1

OPERATION

Description of terminators/designators:

<cr> carriage return (0Dy)
* asterisk (2Ay)
? question mark GFp
! exclamation mark Q1
+ plus sign @By
- minus sign 2Dy
, comma ¢y
- period (2Ey)

6.2 SETUP PARAMETER RANGES

Parameter
Acceleration rate
Internal mode

ALTVEL 0
ALTVEL 1

External mode

Run, Jog, Home speed

Internal mode
ALTVEL =0
ALTVEL = 1

External mode

Relative distance
Absolute distance
Delay time

I/0 Condition

{Label}

PRGOO1e

Token

<ramp>

<rate>

<rpos>
<apos>
<time>
<cond>

<label>

end command argument(s)

stop current motion

display selected motion buffer parameter
display selected motion status parameter
start motion in positive direction

start motion in negative direction

wait for the system motion to stop before
accepting the next character; The prompt
character (>) is displayed indicating
that the system 1is at rest. Any MCC
character will terminate the wait for the
system to stop with a B5 error.

null character which is ignored on input;
This character is normally used to

reserve space in the positioning command
language programming space for changing
the value of a parameter over its range.

Units Range Default
kHz/sec 1 to 65,535 4000
100 Hz/sec 1 to 65,535 -
100 counts 0 to 65,534 -
100 Hz 1 to 1920 400
10 Hz 1 to 4800 -
A% 1 to 1000 -
counts + 2,147,483,647 500
counts +1,073,741,823 0
msec 1 to 65,535 -

- 340y to 0CaFy) -
- 20y to FFH -
-32- ORMEC

6.3 OPERATION

6.3 FREQUENCY REFERENCED MOTION

Upon powerup the PRG defaults to frequency referenced motion commands which
are referenced to the frequency of the crystal controlled system clock. These
commands are accessed with parameters that are in standard frequency refer-
enced formats. Acceleration is expressed in units of kHz/sec (Hz/millisecond)
from 1 to 65,535 and speed is expressed in tenths of a kHz from 1 to 1920 (.1
to 192.0 kHz) Bit 1 of the W Register (ALTVEL) is set to O.

With the alternate velocity selected (ALTVEL=1) the acceleration is expressed
in units of 100 Hz/sec (.1 Hz/millisecond) from 1 to 65,535 (.1 Hz/millisecond
to 6,535.5 Hz/millisecond; and the speed is expressed in units of 10 Hz from
1 to 4800 (10 Hz to 48.00 kHz). The PRF1x1c Indexer firmware described in
SECTION 6.5 with internal distance reference (internal mode) selected
(EXT/INT' - bit 6 of X status byte reset) operates in this mode. A minimum
distance calculation based on the specified acceleration and velocity computes
the minimum distance for an index.

6.4 DISTANCE REFERENCED MOTION

The distance referenced motion mode allows a PRG based motion control system
to operate in synchronism with another PRG or other equipment having a digital
position encoder. This allows a host computer to conveniently control
multiple axes with "linear interpolation”, in addition to several other
general purpose capabilities.

This is accomplished by referencing a PRG's motion command pulses to a digital
pulse train present at the EXTREF' input on header connector J9A near the High
Speed Sensor Interface. For a schematic of this interface see APPENDIX 8.7.
The pulses present at this external motion pulse reference input are normally
the motion pulses from another PRG (REFXPL) present also on header J9A. These
pulses are interfaced through a tri-state RS-422 differential Line driver
(U12) to pins 7 and 8 of JM5. Note that these outputs are received by RS-422
differential line receiver U13 which is factory strapped to EXTREF'.

For an example of how this synchronization is accomplished, consider three
PRGs which have their JMS5-7 and JM5-8 pins bussed together by a twisted pair
cable. In the powerup default mode, both PRGs are deriving their motion
command pulses from their respective crystal controlled oscillators, and
therefore working independently.

Now assume that we want PRG a to be the "master" and PRGs b and ¢ to be
"slaves" and go half as far as PRG a at the same time that PRG a does an
index. Status Register X, bit 4 (XPLENB) should be set on the master PRG with
an $X90. This enables the tri-state driver U12 to drive the "high speed
motion reference bus'". Next, Status Register X, bit &6 (EXT/INT') of the
slaves should be set to select the external mode, with an SXCO command.

The parameters for the slave PRG are now in a format that references the
distance traveled by an external reference. Acceleration is expressed in
units of 100's of external counts from 0 to 65,534 (0 to 6,553,400) and speed
is expressed in units of tenths of a percent of external reference frequency
from 1 to 1000 (.1 to 100.0 %). ALTVEL (bit 1 of W status byte) has no effect
in this mode.

PRGOO1e -33- ORMEC

6.4 OPERATION

The slave acceleration should now be set to zero and the slave commanded to
"jog" at 50.0% of the EXTREF' input frequency. This is done with an AQ and
J500+ command to the slave. An index of the master will now also cause the
slave to move half as far. One can extend this concept of externally refer-
enced motion to implement a wide variety of coordinated motion applications.

when the PRG is commanded to make an index in the external mode, no minimum
index distance calculation is made. Since the frequency of the external
reference is unknown, it is the users responsibility to comply with the fol-
Lowing specification:

"

for a=0: minimum distance 2 x f x v

for a>0: minimum distance (a/9.8 + f) * v

where: a - acceleration in 100 Hz
v = velocity in .1 %
f - external frequency in MHz

6.5 PRF1x1c INDEXER FIRMWARE COMMAND DESCRIPTION

The following command descriptions apply to the default condition of internal
mode (EXT/INT' reset) and ALTVEL = 0 (ALTVEL reset). For a description of
other non-default options, see SECTION 6.2.

@ - comment {program marker Labell}

Syntax : @ [<comment>] <cr>
{Syntax}: @ <label> [<comment>] <cr>

where : <label> single byte program marker with all eight bits
significant; The @ sign character (40y) is a unique
programming label, in that this program will auto-
matically execute on powerup or software reset of
the PRG.
<comment> any number of characters exclusive of the <cr>; If
the label is not present it is recommended that the
first character be a space so that extra program
labels are not created.

Example : @ This is a comment line

aX Comment after a program Llabel 'X'
@@ This is the beginning of the '"powerup'" routine

PRGOO1e -34- ORMEC

6.5 OPERATION

A = Acceleration -~ set or examine acceleration rate
Syntax : A [<ramp>] <cr> | A <term>
where : <ramp> integer (1 to 65,535) in kHz/sec specifying the

acceleration rate (default: 4000 kHz/sec); See
SECTION 6.2 for other ranges.

<term> ' = display current system acceleration rate (zero if
at rest or top speed)
? = display last entered acceleration rate

Example : A3500<cr> @ set acceleration rate to 3500 kHz/sec
A? @ display last entered acceleration rate
Al @ display current system acceleration rate

B = {Branch} - conditional jump to program Label
Syntax : B <label> [<cond>] | B <label> <cr>

where : <label> see @ command label description
<cond> single character (A to 0) representing one of the
conditions in the I/0 Condition Table; IF the spe-
cified input condition is true THEN the command
following the specified program Label will be ex-
ecuted ELSE execution will continue with the fol-
lowing command.

Example : BQ<cr> @ unconditional branch to routine Q
Bam @ conditional 'M' branch to routine Q

D = Delay - delay specified time interval
Syntax : D <time> [<sync>] <cr>

where : <time> integer (0 to 65,535) in milliseconds specifying
the amount of time delay before executing the next
command; The resolution of the internal timer is 4
msec¢ and due to the asynchronous nature of the
delay command there is an uncertainty of 4 msec.
Therefore since <time> is "rounded up'" the minimum
delay is a delay of 1 will delay 4 to 8 msec.

<sync> , = synchronizing character which causes the PRG to

wait for the system motion to stop

= synchronizing character which causes the PRG to

wait for the system motion to achieve a steady

state non-zero speed

b1l

Note : A character entered during the execution of this command will
end this command with a DO error

Example : D16<cr> @ delay for 16 msec

PRGOOTe : ~35- ORMEC

6.5 OPERATION

E = {Exit) - conditional return from subroutine or program
Syntax : E <cond> | E <cr>

where : <cond> single character (A to 0) representing one of the
conditions in the I/0 Condition Table; IF specified
input condition is true THEN execution will return
to the command following the last Function call or
to interactive mode if a function is not active
ELSE next command is executed

Note : this command is valid only in program mode
Example : E<cr> @ unconditional (return) exit
EG @ conditional 'G' return

F = {Function) - conditional call to a subroutine
Syntax : F <label> <cond> | F <label> <cr>
where <label> see @ command lLabel description
<cond> single character (A to 0) representing one of the
conditions in the I/0 Condition Table; IF specified
input condition is true THEN routine specified by
the label is executed ELSE next command is executed

Example : FA<cr> ? unconditional call of routine 'A!
FAM @ call routine 'A' on 'condition M'

CAUTION : Nesting of functions is not supported, therefore only one
function can be active at a time

G = Go - move or examine absolute position

Syntax : G [<apos>] [<sync>] <sign> <cr> | G <term>

where : <apos> integer (0 to 1,073,741,823) counts specifying the
absolute position of the system (default: 0)
<sync> , = synchronizing character which causes the PRG to

wait for the system motion to stop
= synchronizing character which causes the PRG to
wait for the system motion to achieve a steady
state non-zero speed
<sign> + = specify positive sign and perform motion calcula-
tions (system must be at rest before this character
is entered)
~ = gpecify negative sign and perform motion calcula-
tions (system must be at rest before this character
is entered)
<cr> move to the absolute position <sign> <apos> at
rates specified by A and V

N

<term> ! = display the current absolute position of the
system
? = equivalent to G!
* = stop system motion

PRGOOTe ~36- ORMEC

Example : G!
G+<cr>

@
a

OPERATION

display the present absolute position of the system
go to the absolute zero position of the system

G200-<cr> @ move to absolute position -200

G*

a

stop system motion

H = Home - move until encoder reference / sensor

Syntax : H [<rate>]

where : <rate>
<sync> ,

;

<term> +

*

Example : H15+

a

[<sync>] <term>

integer (1 to 1,920) in 100 Hz units specifying the
homing speed (default: 2.0 kHz) see SECTION 6.2
for other ranges

= synchronizing character which causes the PRG to
wait for the system motion to stop

= synchronizing character which causes the PRG to
wait for the system motion to achieve a steady
state non-zero speed

= move at the homing rate in the positive direction
until encoder reference or sensor is detected (see
bit 3 of Y status byte)

= move at the homing rate in the negative direction
until encoder reference or sensor is detected (see
bit 3 of Y status byte)

stop system motion

display current system speed

equivalent to H!

I n

move to the homing position in the positive direc-
tion with a velocity of 1.5 kHz

H,—- @ wait for system to come to rest before homing in
the negative direction
H* @ stop system motion
I = Index - move to the relative position

Syntax : I [<rpos>] #<mdes># <cr> | I <term>

where : <rpos>

<mdes> +

Ll

PRGOO1e

integer (1 to 2,147,483,647) specifying the rela-
tive position to move (default: 500 counts)

= move <rpos> relative distance in the positive
direction with the rates specified by the A and V
commands

= move <rpos> relative distance in the negative
direction with the rates specified by the A and V
commands

= synchronizing character which causes the PRG to
wait for the system motion to stop

= synchronizing character which causes the PRG to
wait for the system motion to achieve a steady
state non-zero speed

-37- ORMEC

6.5 OPERATION

<term> * stop system motion
display the distance remaining in the current or
last index

? = display the last entered index distance

Example : I250<cr> @ set the index distance to 250 counts

I+ @ index the system to the previously set distance in
the positive direction

I,- @ wait for last motion to end; index to the previous-
ly set distance in the negative direction

1300,+ @ after the Last motion is complete; index the system
300 counts in the positive direction

I,+,- @ wait for last motion to end; index in the positive

direction; after this motion is stopped; index in
the negative direction

I! @ display the number of remaining counts in the cur-
rent move
1? @ display the previously specified relative distance
<rpos>
I* @ stop the current index
J = Jog - move at the jog rate

Syntax : J [<rate>] #<mdes># <cr> | J <term>

where : <rate> integer (1 to 1,920) in 100 Hz units specifying the
jog rate (default: 10.0 kHz); See SECTION 6.2 for
other ranges.

<mdes> + = jog in the positive direction at the specified
rate
- = 3jog in the negative direction at the specified
rate
, = synchronizing character which causes the PRG to
wait for the system motion to stop
; = synchronizing character which causes the PRG to

wait for the system motion to achieve a steady
state non-zero speed

* = stop system motion; System motion can be stopped
by typing any character other than , or ; if the
PRG is running and still in the middle of a J
command.

<term> ! = display current system speed
? = display last entered jog rate
Note : The acceleration rate and jog speed can be changed while a jog

motion is in progress by entering the new values and initiating
another jog command.

Example : J! @ display the current speed
J? @ display last entered jog rate
J36,+ @ wait until Llast motion is done; jog in positive
direction at 3.6 kHz
J+ @ jog in the positive direction at previously speci-—
fied speed

PRGOOTe ~38- ORMEC

OPERATION

J,- @ wait for the system to come to rest before jogging
in negative direction

J=* @ stop system motion

J,~*+*= @ wait until end of last motion; jog in negative

direction; stop; jog in positive direction; stop;
continue jogging in negative direction

{Loop} - repeat program segment specified number of times

Syntax : L <label> <count> <cr>

where : <label> see @ Label command description
<count> integer (0 to 65,535) number of times to Loop
Note : the Loop command is valid only in program mode

Example : LB20<cr> @

CAUTION : Program Lo
Loops will

Loop back to Label 'B' 20 times

ops cannot be nested. Interaction between multiple
produce unexpected results.

Normalize - set absolute position or reset PRG

Syntax : N [<apos>]

where : <apos>

’

<term> +

<cr>

*

Note : The system
executed.

Example : N2000,+ a

N* a
N<cr><cr> @

Qut - set Machine

[,] <term>

integer (0 to 1,073,741,823) counts specifying the
absolute position of the system (default: O

= synchronizing character which causes the PRG to
wait for the system motion to stop

= set absolute position counter to plus <apos>

= set absolute position counter to minus <apos>

= start serial/parallel MCC selection (autobaud if
serial)

= PRG software reset

must be at rest before the above terminators can be
wait for system motion to stop; set absolute posi-
tion counter to +2000

software reset PRG
select serjal 19,200 baud MCC

I1/0 Interface state

Syntax : 0 <cond> | 0 !

where : <cond>

PRGOO1e

single character (@ to 0) representing the table
conditions specified by the Machine I/0 Interface
Table

= display the current <cond> of the system; 1/0
Condition Table Lletter

-39~ ORMEC

o

Example : 0C
0!

OPERATION

@ output condition 'C!
@ display the current condition letter

P = {Program} - enter or examine motion program

Syntax : P <des> #<char># | P <label> #<char>#

where : <des> !

= initiate programming at beginning of program

buffer; The program buffer is a free space in
either EEPROM (PRG=901) or RAM (PRG=902), which
starts at the beginning and ends with the char-
acters <cr>Q.

= display program buffer from the beginning, a
command at a time; The ASCII ESC(1By) character
will terminate the output while any other character
will cause the next command to be displayed

<cr> = initiate programming at the end of the program
buffer
<label> see @ label command description; initiate program-
ming at the beginning of the program with this
Label
<char> characters other than those described below are
entered directly into the program buffer
. ESC = escape(1By), exit program mode
CAUTION: Don't use this command if the end of
program buffer is overwritten.

TAB I CTL-Y = horizontal tabuLat'ion(O‘?H)’ move program buffer
pointer forward one byte and display character or
entire Line (if advanced to the next Line) NOTE:
the PRG-004 Programming Terminal has an ENTER key
which produces a CTL-Y

BS | DEL = backspace(08y), IF buffer pointer is on a command
character THEN move buffer pointer to the previous
command character; output: <cr><lf><entire Line>
<cr> ELSE move buffer pointer back one byte; echo
oo

LF = advance buffer pointer to the next Lline and
display it
Q@ = end the program buffer at the current Location
and exit program mode The Q@ must be immediately
preceeded by a <cr>.
Note : A non-printing character in the program buffer is displayed as
a ~ (TEy.

Example : P?

. pP<cr>

PRGOO1Te

@ display the first command of the program buffer and

display each additional command by entering any
character until the ESC key is entered or the Llast
command is displayed

@ add program text at the end of the program buffer

until a 'Q' is entered
CAUTION: Never use an ESC to exit this mode.

-40- ORMEC

OPERATION

{Quit) - terminate program space and exit program mode

Syntax : Q

Status - set or examine control status registers
Syntax : S <id> <data> <cr> | S!
where : <id> single character identifier (W | X | Y | Z) refer-
encing the desired status register (see below)
<data> hexadecimal representation of the selected byte
! = display status registers 1in the order WXYZ

W Register

bit O DIRINV (direction invert) transposes the meaning of + and =

bit 1 — ALTVEL (alternate velocity) selects 48.00 kHz as the maximum
velocity and increases the resolution of the acceleration and
velocity parameters. See SECTION 6.2.

bit 2 - reserved

bit 3 - reserved

bit 4 - reserved

bit 5 - reserved

bit 6 - reserved

bit 7 - reserved
Note : W bits cannot be changed when the system is in motion
X Register

bit 0 = PLDIs' (Position Loop Disable) DPL output; This output
disables the position loop in the MLC, allowing the MLC based
servomotor system to perform non-positioning operations.

bit 1 - DRVDIS' (Drive Disable) DPL output; This output asserts the
drive 1inhibit (DRVINH) output of the MLC as well as dis-
abling the position and velocity compensators in the MLC.
The MLC is designed with buffered Lline driver outputs for
driving a solid state relay to power down the servodrive
and/or disable a LOOP CONTACTOR (dynamic breaking relay).

bit MLCRST' (MLC reset') DPL output; Resets the MLC.

bit 3 —= DRVON (drive on) DPL input for determining if there has been
a position error counter overflow fault at the MLC. This bit
is used as a lower nibble set mask on output (See SECTION 6.8
for details).

[a¥]
|

bit 4 - XPLENB (external pulse enable) enables this PRG's motion
reference pulses as the source on the Motion Reference Bus

bit 5 — ARENB (alternate reference enable) selects mode whereby each
odd reference pulse is passed through to the FWDCMD on the
DPL and each even source reference pulse is used as the
internal distance reference; This output is probably useful
only with external mode for establishing a nominal motor
speed with respect to other moving machinery.

PRGOO1e -41- ORMEC

bit

bit

Note

CAUTION

Y Register

PRGOO1e

bit

bit

bit

bit

bit

bit

bit
bit

6

7

0

~ O~

OPERATION

EXT/INT' (external/internal') selects external distance re-
ferenced motion mode rather than use the internal clock as a
time base; This bit can only be changed if the system is not
in motion.

FWD/RVS' (forward/reverse') indicates direction of current or
last motion; This bit is used as a upper nibble set mask on
output (See SECTION 6.8 for details).

To set X bits O thru 2 the mask bit 3 must be set and lLike-
wise to set X bits 4 thru 6 the mask bit 7 must be set.
Therefore the Low bits can be set independent of the upper
bits.

Altering any of the W or X bits will cause an immediate
effect.

SHPJOG (sharp jog) selects a sharp (immediate) stop upon jog
deceleration rather than the controlled deceleration rate
specified by the A command

SENDCL (sensor decelerate) selects the sensor input to ini-
tiate motion deceleration after full speed is attained; Or-
dinarily deceleration is initiated when the remaining dis-
tance is equal to the acceleration distance.

JOGSTP (jog stop) specifies that speed should remain at the
Level set by the J command during deceleration rather than
continuing to zero; JOGSTP is usually used in conjunction
with a sensor stop.

SENSTP (sensor stop) selects the sensor input signal
(SENSOR'") rather than the encoder reference to stop the
motion during a home command; This bit is also used to
select either the encoder reference or the sensor input
signal for a motion using the JOGSTP option (bit 2). To wire
the SENSOR' input, see APPENDIX 8.7.

SENACL (sensor accelerate) causes a motion to begin upon
receiving either the sensor input signal (SENSOR') or the
encoder reference depending on the state of bit 5. To wire
the SENSOR' input, see APPENDIX 8.7.

SENSRT (sensor start) selects the sensor 1input signal
(SENSOR") rather than the encoder reference to start a mo-
tion; To wire the SENSOR' input, see APPENDIX 8.7.

ACLTYP (acceleration/deceleration type) various acceleration
profiles are selected by setting these two bits (bits 6 & 7)
as follows:

bit 7 bit 6 type
0 0 = Llinear
0 1 - s=curve (polynomial)
1 0 - parabolic
1 1 - reserved
=42~ ORMEC

Note :

CAUTION :

Z Register

bit 0 -

bit 1 -

bit 2 -

Note

bits 3-7

PRGOO1Te

OPERATION

Y bits are only examined when a motion is started; therefore
altering them during a motion will only effect the next
commanded motion.

The minimum distance calculation does not currently account
for the additional acceleration distance of the parabolic
ramp nor is it used in external mode.

NONECH (non—echo) prevents the echo of all MCC characters as
well as preventing the echo of characters from the program
buffer while the PRG is running a program

CAUTION: The auto distance calculation is not performed when
in the non-echo mode.

HEXMCC (hexadecimal MCC) specifies that all input data be
interpreted and output data be displayed in ASCII hexadeci-
mal; Default input/output is in ASCII decimal.

BINMCC (binary MCC) enables binary input/output; Binary
input to the PRG for any given data transfer is selected by
setting the high order bit of the ASCII command character.
That character must then be followed by the appropriate num-
ber of two's complement binary interpreted bytes (most signi-
ficant byte first). These bytes are not echoed regardless of
the setting of NONECH (bit 0).

Command # bits # bytes terminator
A 16 2 None
D 16 2 None
G 30 4 Yes
H 11 2 Yes
I 31 4 Yes
J 11 2 Yes
N 30 4 None
S 32 4 None
v 11 2 None

The high order bit is ignored for all other commands not in
the above table. The <cr> terminator is not required with
the commands indicated above and the '"greater than" prompt is
returned after the specified number of bytes have been sent.
Note: The (G)o and (Ndormalize commands expect their argu-
ments in two's complement form and the <cr> initiates action.
The <sign> character is not recognized in binary mode.

Binary output from the PRG (in two's complement form) is re-
quested by setting the high order bit of the ASCII '?' or '!!
terminator; The number of binary output bytes can be deter-
mined from the above table.

The high order bit of the ASCII characters is ignored if

BINMCC is not set.
reserved

-43- ORMEC

OPERATION

Until - wait until specified condition is true
Syntax : U <cond>

where : <cond> single character (A to 0) representing one of the
conditions in the I/0 Condition Table; WHEN speci-
fied input condition is true execution will con-

tinue with the next command
Note : A character entered during the execution of this command will
end this command with a DO error, and STOP' asserted at the MIO

will end this command with a D1 error.

Example : UC @ wait until the 'C' condition is true

Velocity — set or examine maximum velocity rate
Syntax : V <rate> <cr> | V <term>

where : <rate> = integer (1 to 1,920) in 100 Hz units specifying
the velocity rate (default: 40.0 kHz) see SECTION
6.2 for other ranges
<term> ! = display current system speed
display last entered velocity rate

(]
1]

Example : V304<cr> @ set velocity to 30.4 kHz for next motion
v? @ display last entered acceleration rate
v! @ display current speed

PRGOO1e -44~ ORMEC

6.6 OPERATION

6.6 1/0 CONDITION TABLE

+ ————— -———— + e +
| | Input condition | Output condition |
| condition | IN3 IN2 INT INO | 0UT3 0UT2 OUT1 OUTO |
| Character | JM2- 41 43 45 47] Jme2- 17 19 21 23 |
s e + -— ———+
| a0y | - - - - | H H H Ho |
| ATy | = H H H L |
| B2y | - - L - H H L H |
} C(43) | - - L L | H H L L |
| DCb4yy | R H L H Ho| |
| EGS5y | - L - L | H L H L |
| Fl4byy | - L L - H L L Ho |
{ G(4Ty) l - L L L | H L L L '
| HWByy | L - - - | L H H Ho |
| 1G9y | L - - L | L H H L |
| JGAy | L - L - L H L H |
| KBy | L - L L L H L L }
| ;

| Lcyy | L L - - L L H Ho |
[mGpyy | T T L L H L |
| NCGEy) | L L L - L L L H |
[0GFy | L L L L L L L L |
== + + -— -—+

(H)igh TTL Level (L)ow TTL Llevel (-) don't care

6.7 EXCEPTION HANDLING AND ERROR CODES

The PRG is designed to trap user errors and return error messages in standard
formats. It is the responsibility of the designer of the host computer soft-
ware to handle these messages. Once an error is detected; the current mode is
terminated {including programming mode}, an error message is sent to the MCC,
and the PRG will accept a new command following the output of the prompt.

Error messages from the PRG are preceded with a number sign (#), and followed
by a two character error code. A description of these error codes follows:

Syntax error codes:

A1l - invalid command; After the PRG sent a prompt character, a command
character other than one described in SECTION 6.5 was entered.

A2 =~ invalid terminator or designator; A character other than a termina-
tor or designator expected by the command was entered.

A3 - 1input argument > 32 bits; A number greater than the maximum size of
4,294,967,296 was entered.

A4 - out of index range (1 to 2,147,483,647); A number out of the allow-
able range of <rpos> was entered.

PRGOO1e -45- ORMEC

AS -

A6 -

A7 -

OPERATION

out of absolute range (1 to 1,073,741,823); A number out of the
allowable range of <apos> was entered.

out of acceleration range (default range is 1 to 65,535); A number
out of the allowable range of <ramp> was entered.

out of velocity range (default range is 1 to 1920); A number out of
the allowable range of <rate> was entered.

Motion error codes:

B1 -

B2 -

B3 -

B4 -

B5 -

B6 -

B?Y -

currently unused

command not legal while system in motion; A motion designator or
programming command was entered when the system was in motion.

attempt to move system with +LIMIT', or -LIMIT' low; Forward motion
was attempted with +LIMIT' low or reverse motion was attempted with
-LIMIT' Llow. These signals are found at the Machine I/0 Interface.

move distance too short; Calculated trapezoidal profile minimum
distance is greater than actual move distance. The PRG will output
the calcutated minimum distance preceeding the #B4.

MCC character received during wait for motion complete or wait for
steady state velocity; Any character entered during a comma desig-
nator wait for the current motion to complete terminates the wait
with this error.

attempt to move system with drive off; A motion designator was
entered with DRVOFF asserted.

invalid use of the Jog command; Speed changes can only be made while
a jog motion is in progress.

{Programming error codes}:

on

2 -

3 -

4 -

c5 -

PRGOOD1e

program buffer overfiow; There was an attempt to enter more charac-
ters than the program buffer can contain.

undefined program label; There was a branch, function call, or loop
to a nonexistent program label.

program memory storage fault; The last entered character program-
ming character not saved in program buffer due to hardware failure
of the RAM or EEPROM memory.

MCC character received during command execution

currently unused

command not legal during program execution; There was an attempt to
execute the Program command during program execution.

-46- ORMEC

6.7 OPERATION

Miscellaneous error codes:
DO - MCC character received during Delay or Until command

D! - STOP' signal at the Machine I/0 Interface asserted

6.8 STATUS REGISTERS

There are four status registers, designated W,X,Y, and Z. The purpose of the
status registers is to allow the user to conveniently change the configuration
of the PRG to meet individual motion control application needs. Each status
register contains eight "bit switches", which when "set" or "“cleared" will
change the operation of the PRG is some way, with the exception of the X
Register in which two of the bits are informational bits and cannot be set or
cleared.

The status registers are examined or configured with the S command. To
examine the status registers, powerup the PRG in interactive command mode and
type the following sequence. See the GETTING STARTED (SECTION 5) for more
detail. In the following sequences, bold print indicates the sequence that
you type and regular print is the information sent by the PRG.

PRF131c

=>S$1000F0000 - To examine the status registers, you typed S!, and the
PRG in turn sent eight characters, which are hexadecimal
digits indicating the bit patterns in each status regis-
ter. The first two digits indicate the bit pattern in
the W Register, the next two digits indicate the bit
pattern in the X Register, the next two digits indicate
the bit pattern in the Y Register and the last two
digits indicate the bit pattern in the Z Register. The
first digit of each pair indicates the value of the
upper "nibble" (bits 7-4) and the second digit indicates
the value of the lower nibble (bits 3-0).

PRGOO01e -47- ORMEC

OPERATION

The following chart indicates the relationship between the nibble values and
the individual "bit switches'" of the Status Registers.

Status Register Bit Assignments

	Bit		Bit
Upper	Number	Lower	Number
Nibble		Nibble	
value	765 4	value	3210
I I I			
	I	I	
Oy	J000O0	O4H	0O0O0O
4w	0001] 1 J00O01]		
2y 0010 24	0010		
I 34 0011 34 ! 0011 I			
4y 0100 4	0100		
5y 0101 Sy	0101		
6y 0110] 64 J 0110			
I 7y 0111 7H	011 1		
8	1000	8	1000

| 94 1001] 94 |1001

| Ay 1010 AH | 1010

I By 1011 BH |1 01 1!
| ¢ 1100 ¢4 |1100]
[b4 1101 o0 [1101]
| EQ 1110] EH | 1110]
{ Fu 1111 l FH ,1 111 i

1 indicates that
0 indicates that

the
the

bit switch is set or high
bit switch is cleared or Low

To determine the hexadecimal values for the upper and lower nibbles, find the
desired bit pattern of each nibble and look up the hexadecimal value for that
the command SWO3 will set the bits in the W

bit pattern in the table. e.q.
Register to 0000 0011.

The general orientation of each of the status registers is listed below. For
a detailed description of the meaning of each bit switch in each status
register, refer to the S command in SECTION 6.5.

PRGOO1e

-4 8- ORMEC

6.8 OPERATION

W Register - modify the meaning of motion commands
Example:
=>SwW2 - sets the W Register bit pattern to 0000 0010, which

reduces the maximum velocity of the PRG from 1%92.0 kHz
to 48.00 kHz as well as increasing the resolution of the
velocity and acceleration specifications

=>S1020F0000 - displays the current status register values

The X Register is unique in that it has two bits (bits 3 and 7) which are
informational bits that can be examined, but not directly manipulated, by the
status command. Bit 3 indicates whether or not the MLC currently is asserting
the "drive on" output (to enable the servodrive power) and bit 7 indicates the
direction of the most recent (or current, if the system is moving) motion.

For the MLC to assert the "drive on" output and enable servodrive power, two
conditions must be met. First, the PRG must have the X Register, bit 1 output
(DRVDIS') high. Second, the MLC fault detection circuitry must be reset.
Therefore, if the DRVDIS' is high and the X Register, bit 3 (DRVON) is Llow,
then the MLC fault detection circuitry must be reset by momentarily clearing
the X Register, bit 2 (MLCRST") and then reasserting it to remove the RESET
condition. This may be accomplished with an N* command, or by executing an
SXB status command, followed by a few millisecond delay (D3) and executing an

SXF command.

Because bits 3 and 7 can't be manipulated directly, and since the lower 4 bits
of the X Register have a different orientation than the upper 4 bits, bits 3
and 7 are used on output as "lower and upper nibble set masks'. i.e. In order
to change the bit pattern of bits 0-2, bit 3 must be high on output. Con-
versely, if bit 3 is not high on output, the bit pattern of bits 0=-3 will
remain unchanged. Also, in order to change the bit pattern of bits 4-6, bit 7
must be high on output. Conversely, if bit 7 is not high on output, the bit
pattern of bits 4-6 will remain unchanged.

Remember that asserting these bits for an output command will not set them for
input, but only allow the user to "mask' the manipulation of the Llower three
bits from the manipulation of the upper three bits. The following sequences
will illustrate this principle.

=>S!000F0000 - displays the current status register values; Displayed
are the default values.

=>SX08 - clears bits 0-2 and leaves bits 4-6 unchanged; Bits 4-6
are unchanged because bit 7 was low. Consult the chart
above for status register bit assignments.

=>SX8 - does the same thing as SX08 because the PRG does not
require leading zeros to be entered

=>SXF - sets bits 0-2 and leaves bits 4-6 unchanged

=>SXED - sets bits 5 & 6, clears bit 4 and Lleaves bits 0-2
unchanged since bit 3 was low on output

PRGOO1e =4 Q= ORMEC

6.8 OPERATION

=>S!1006F0000 - displays current status register values

=>SXD - sets bits 0 and 2, clears bit 1 and leaves bits 4-6
unchanged

=>$100650000 - displays current status register values

X Register (lower 4 bits) - communications with the Motor Loop Controller

control communications with the "Motion Reference
Bus'; This part of the X Register ijs used to
coordinate the motions of multiple PRGs. For more
information about coordinating the movement of
PRGs, refer to SECTION 6.4.

X Register (upper 4 bits)

Y Register - alter the type of motion performed by motion com-
mands which follow; This register is used to
control the shape of motijon profiles and accurate-
Ly synchronize motion with external sensors inter-
faced with the High Speed Sensor (HSS) Interface.

Z Register - control Motion Control Communications with Host;
This register is used to turn on or off echo of
PRG activity to the MCC, as well as enable binary
or ASCII hexadecimal communications.

MAINTENANCE

=z A4 Ccuc
T 1

nn MTTWUC
rRcvyocmi

1V

No preventive maintenance procedures are required for the PRG-900 family.
7.2 DEMAND

ORMEC equipment 1is designed modularly for simple onsite demand maintenance
consisting of convenient module replacement. Most of the integrated circuits
used for Input/Qutput are socketed for easy user replacement. If a problem
occurs which is beyond the socketed I/0 circuitry, the user should return the
defective module for factory repair. The PRG-900 family is designed with
connector interfaces to make board replacement in the field simple and fast.

PRGOO1e =50= ORMEC

: . — >
HHCW,ObO.C,H.Lm L
T.M i) Abw L e eli(.s e Jv
wexde 1 i
50B Ao U] Wo4SAS i 28/92/0T .0
dt0D BWARLRAS Uu—g@
S.OUd 43IHLO
" SHOSN3S
0 03348 HOIK
>
Lon)
a
= 4300083
()
o
o
<
HOY 1
. N
_ J
|
108INOD | 104LNOD a) XN 006-94d (50w}
HOL0W g H010VINO IN800AH3S M aaonan | noitisos JREEIREH JINNVHO
~0ny3S di0] /_ 901Ny | w1910 [\ NOLLOW ..
1]
ﬂ 0010w
.]
vo? 13 0/1 WIB3S
_ 531 1I81LYdW0D 0/171377v4Yd .
SAVI3Y P Ec._h INV1HIVE
SIHILIMS LIWHT INIHOYW SN8LANW
T1]4]7 0 0 94 d
. w loawal s CRvh A —_—

._umoooaam

acde)

90 [i135m8] ang ’e—g‘!i o

IN0OAY

LY o)

JavOH — 3d O06-5Md

Nw KRS 1 ive

dHOD BN3LEBAS UW—)_GQ m

SINUIIEPHAY Duryip
FyeaErII00IA-0D
Swos 95/ md 94
Jwl™ 324 spidame) g
P20’ ¥ w xx*
$00°F = Nxyx*

APPENDIX 8.2

ubv»(whqn.wh 1.4 ;

‘9 XNIN] .
w336 ssNING YT Y pguie

g 21/4

-8 ~nolu2XS

u\o.it_ T.

"

©SWMNIO 00" NQ ”

' é

© ose’

m %AT. I
Losord | ULy
YRIIWO) DRET T F FINXOT)

& iYL hmw

IW&,TL ﬂn

A]Icllll.llwaw

F0IC ANINOIHO)

_--l.:i.-f-a ﬁ

\
]
|
]
'
]
'
|
i
|
1
l
1
|

i
vt or4i0d A4’ Ll 1 4 _
as sirymdu) 17

1
i
|
i
f
1
‘
|
¢
|

2

ooo ' Z/

'_ _.\lazl_ Q?Il' lL le—ve+ —

\[1]8]c 00 90y <9 R
w3 |oamas] ame R LY DN L6 Deinvw | 17 oY
TNOXVT ININOJW.TD L w_.xd
WIVIINT TRIIIIH WIS RIS
dt0D SWALBAS UWEEO@
NN 3TN - .
0/1 sndg als o FIV4HILNT ,SNAILINKW
v __E »r 1_u [n.u_ ™) _._l
- O .._m 2 ton . zen 2. wn T s€n €an e 0 o O
mna: : gle
. - : o
o s[] s/ | 0= [] ic= c=gc=ac=2 (00
> " Ln LnJ grn ”wn ”wn azn |r. :
o, L0 | N E D — A 5 — A B _ m 1:)
D 1 . —1 g . L] - m e D“
W.u & £ C— 3 — ezn en en (] o
= 1 W L _ 300 2k LI
<< g en g een . 5
=) = r
— g o | F
- m "o R - g
c c s o« [14] -
% a - ..D " d E nm.”m u.D - 20
oggﬂ oﬂhﬂu . r=I_ .&Z.Iv- m
S reén 8 e on 2 = g : S
R & 103 R
* N uz: .
& = . . sen g [1 Dm ﬂ__U
| 0
—8c :m:] : I z =
_ 9o
O/T 3INTHIVN

Ca e —

wsf avaune adv

ix 8.4

pend

Ao

v L1016, 0 0 9 Yy 48|77 7% LEVSN SOWN -73LNI| vI628d Jvo ooNanen
0 Jiims] A NO'L¥T131AN301 Shmvan | 37 . \,M\;Na Y3AIHA IVILNIYI 410 QvND 1] NBLIGLNS ¥ 200L1anjoin
3 E] 28~ -0l (2€2SH)¥3AMAQ 3NTI aE !
OV I LN DDOW Twid3s O 4 svo NO!LY HNSI4NGI > Q3 vNa- L d0GIgL | viooLan| en
dHOD SIWILSAS UW—)—ED@ wxm) Q3TVLSNI AHOLIYS Y 3NIZ3D3Y IVIINIYISS10 QuND ‘11 Z%LN_@%ZMH ,Q.m,OOhOD m\D
it 3HL S 330 2€2SH NOILdIN I$30 e Il
210 D772 320 (7 310w
HOLI3NNODY 8NS-Q
SNOILYHNOIANDGD ONId~YNLS NO SLN3WN9ISSY Nid
| ' f ' i . T
MOl 52 — 5|
Tmuom 25 — (S
R I __
L
(9)%4 62| —_— T_
L ! o _ . viva
w . | _;:mu 6| — 16 7 ‘ 137Nvyvd
i * !
| i e
1 _ | | I |
iz e | (WIS £ 93| ¢ | gld—12Z |
: @ g3kg | 53| 1 I 2] y e
i wis| 2 X2 _ m.___lLI. &l °
Gt (E el voIN[Z bljAQY™Y
'R |
aletle _r..“m axM| ¢ ! .
_ | :
*r _Asox 9 ¥sa; 9 | oen
|
__ - - = m _
Bl K 12| 6 ! |
Ll s _ m 610 *1
| _ | SLY
" (")3S] b | SLY v i
. —lie NS 52|
L . e .« . . s — 1 AZ1| 1
Z ’ | AG +
L .._m..x_m..: — 62 NZ1|72
MYHSONTH I
£2bSy 2265y ey OV Q195}6! . e
¥ 2€2SH JNYN NI SWYN NId
6055 2¢2-Sy ZA AR v L]0]S. 0.0 9 4 4|8

5

iix 8.

ApTer

o
IS g 2 A 30 NS 13N 206385 vaIoNd on
JIVIH IUINI O/ INIHIYW)Y H A | 28 /S1/01 .., N >u_u-‘u — A3LNI 206285 valoN3sE| on
dHOD SIWILSAS Um_s_n_o@ ﬂm% e = N. gol49 | E NOOS 1v4} ¥200 300 b0
22 ﬁﬂ .r|.|© @Jw— 55 og : 11 NQOSIp/| v/0C1an ¢n
| i =
. , R 12 S 7 o SNYNOB] 222-101-401Sb| WIIONIY [Ny
ON L¥¥d 220140 ! o] &9 Y _
¥ e ez ke MINWL wamaiovsmen | oy e 56T
] _
8l
81
2l
o sng
vivo
SN
U"
¢l
a] ey g r|M._ ci D)
| i —— . ® _ D
.ﬂvmmn_ I G P—— z]
| \
ol 8B
_ ij en W_l
LV9I-8d © NN o
8 N s)
r=
] ook —s LY
o | de O_— “ e
9 o€ S aelov
! 4 (I
| SldE T ge |V
{ T T &
L8 bk m_h L .
{ | |
2 | & F 2y
! _mcx_..| S _ _ 7 L
0 L~ r ov
Vo poal lery i a7 c_
w _“ e 7 92
_ T 2Ny
TS e & s
H1SSY 3INAOW 0 /1 b121 868G 0 09 Y d|8

Appendix 8.6

hl
Ive 216 0.0 9 o5 d|8 imw\i\mwwwﬂ(NZhoIhL| v1o0wan| 1A NYBITHL | 9500100 k!
10 L3iHS| Ay NOILYDIAILNIQI DNIMYBA 3213 % * zn‘JNWJT._l quOJOD 83 ZNrwI—IN\ ¢-OOJOD FND
NMYHO
w NOILIVHNOIINOD
S z NAN| Lkn N bOSTHL | ¥110730(920
NI DWW 1311v¥Vd 23/51/01, (NDSO2E Y] VSO0
ERLZEEN O4d = Q3 TIVLSNI :PS V4 3IHL S e I e N e T B
(G . e ONgW 33 HOL O 4
dHOD SINTLSAS Ums_mo@ o NMOHS sv Hvg ss3ygay ## EELEhT FET, 23O | 33 ¥ d
I A
IYNOILdO *
LINT
TS T s m m m = = — e o e e e MM
L 92 Sh 9A LA BE LAOIA AT A ¥ Nﬁ _ﬁ cA 024y LI ST TR SNAP WD S W .O—\/_ﬂ.
25 RN Y M A U VA LA LI b Iﬁ - — - = — - — DA sty
Ql
ﬂ ﬁl L2338
* LD
¢ SN, ———
3 ©1u0 Loty e
h F ..lwl@. 9
d osn | Ci. b hi
G S 19 € z
- SOUBLS [vang Ty veXig 77| Lh0
y N ALwo ey T o Tk 3
g'sg s anNog 5 o3y TN v Al i
08wl AZI- t Qu3IY SOluig] 91 L :
sL| Azl Not I
hg'eg'zaie 9shg| NG b o e
- Lt % 1
SNid WL TENOIS T AQuaow by oz 7
2] (X3S &t
379vL TYN9IS L . Algw3 e YiRe T yan -
€| Y33300 woa N 520
! NS st
R V3430 w0a1n0
<l
7
@l in] o »mb G| 5] 1] on 2l LS ox z
[(N Y A R R it %@ nl Lol
" as YRYoT M < .
WINY 39n0 49Kh0 r thh 9 !
RS - i e B T e — Exndiasars _
k-]
1353y & vanl 2 soiwis TRIC .6 <l
A RECLGYIVIEE ¥+
1
ﬁl||ﬁ|ll = =+ 4+ — = [—] =] 1 1 Tlll..ll — —_ - T — == = — — A ==] ===]
19¢ 6¢ &¢ kn«lorlrml 2h ip — _ 8919 o b9 IN.\.IM(*FI&IMWI [T . AR ||_~I~mv|~m _ 85 GC 90 EG wS 157 25 b o% Lth' 8h] _S:J
L4 T AT RANT ST ot T 214 va g1 hvd Fag2atd N Gl ATu LINT 2L T T T T T T T \uge Y 00 hod sam 4507 {20k 0¥ 10T WuO8 QT

Uﬂ

6§ 0.0 9 4 d

g

=

NOH YD IUNIA ONIM YOO

32

v[7]0]5.0. 0 9.4 418

e

O34 Cudar

el G R X

SOV NI DYED | NS

J0VdS3INT

140 CINY | S5H - QOM~

e P s

1_ A YR
Jd-ti-0l

i wQ

dHOD SWILSAS Umimo@_

o

Appendix 8,7

[rie 140
IAINQ
- roo
VIHIHD 91 1 &gy
| [
AZ1— %, Aw._.u.zwﬂ
NOWNDD 2 | ﬁ
NOWnNQDd T _m.lIL. T 2
| e =
Adt+9) AnmufuZ E
| o
AT | _ﬁTﬁJ_z i ﬂ 3
4140080 22, G ___qm‘ "
230080 6 ' G o
SAUINE 12 G vl
. 1,0 T
SAJING 3 .ﬁﬂl T “ | ULy - BN
MIINZ 02, G _lj |
] N
OMIINZ L s
4340N3 9 _
Mm.w.:?_w 61
13538 €2 & !
' el
13933 O | &7 7] i
=t w _.@_ - < 1353 21N
SI0A&d 81 1 G A I
U S G T 218vsIg 3n¥Q
~ i
SN L1 G " 318vsid
sidld by s T 2 400TNDILISOd
WA €L, G | 4N S35
QUM 57 ! ANV WA
, bl A TR}
QuipImy L G b A
i . _ S35 1N«
QHISAY §2 | G azmz___,_mw
QASAY 2|} s AECRLEE!
T30 WP

(dH) 9SINT | 5 90OW3S N216LNS | wzooLon
(GH) 981Na | v900W3s No21SINS | veooLan

NSLIGINS| wgoQan NSLIGLNS | weoo1an
Rl RS N+LIGLNS| 200100

NOILVdNOI4NOD d3 1IVLISNI
AHOLIVd 34 Y SHIdWNT *

o

SERVED

c

i m

DESFNSOR
——> FESZRVED

]

ON Lbed oN oo
A o S0 P 23w

At
té%o

Mip |4
Ny

e RESERVE
—i
~—
P~
< —-Ta

{:ﬁru;_-——o EXTREF

jwl_—-J_I
—e

[|

<
O
s 7]
§—_

1
| —

T

4

Ao

D >

-

>
'l

REFXFL
FPESERV

SERVED

R

Qolfy {1t '
wr.!(n._ "
m L
Z 4
w SSH GWr
a
>
5.0.0.94d

SN,

N ey N DY

