Tech Note # 32

Introduction

A SCARA robot is a simple mechanism frequently used for high speed pick and place applications. In a two-axis SCARA robot, the axes control the angles of the two joints. The position of the end effector moves in the X, Z plane and is the resultant of the angles and the lengths of the arms. Many applications require the end effector to move in straight lines in the X, Z coordinate system. To accomplish this one needs to solve the coordinate transformation equations to convert a desired X, Z position to the joint angles required.

Coordinate Transformation Solution

The following diagram shows a simplified mechanism. We need to state the equations for X and Z then solve them for A and B. The equations for X and Z are,

\[
\begin{align*}
 x &= p \cdot \cos(A) + q \cdot \cos(B) \quad (1) \\
 z &= p \cdot \sin(A) + q \cdot \sin(B) \quad (2)
\end{align*}
\]

Now,

\[
\sin(\alpha) = \sqrt{1 - \cos^2(\alpha)} \quad (3)
\]

so,

\[
 z = p \cdot \sqrt{1 - \cos^2(A)} + q \cdot \sin(B) \quad (4)
\]

Solving equation 1 for \(\cos(A) \) we have,

\[
 \cos(A) = \frac{x - q \cdot \cos(B)}{p} \quad (5)
\]

Figure 1, Simplified Mechanical Diagram

Substituting this in equation 4,

\[
 z = p \cdot \sqrt{x - \frac{(x - q \cdot \cos(B))^2}{p^2}} + q \cdot \sin(B) \quad (6)
\]

Solving equation 6 for B gives,

\[
 B = \arctan \left[\frac{2 \cdot z \cdot q \pm \sqrt{2 \cdot (y^2 \cdot q^2 + x^2 \cdot p^2 - x^2 \cdot y^2 + x^2 \cdot q^2 + p^2 \cdot y^2 + p^2 \cdot q^2 - x^4 - p^4 - y^4 - q^4)}}{(x^2 - p^2 + y^2 + q^2 + 2 \cdot x \cdot q)} \right]
\]
Likewise,
\[
\sin(\alpha) = \sqrt{1 - \cos^2(\alpha)} \tag{8}
\]
so substituting this in equation 2,
\[
z = p \cdot \sin(A) + q \cdot \sqrt{1 - \cos^2(B)} \tag{9}
\]
Solving equation 1 for \(\cos(B)\), we have,
\[
\cos(B) = \frac{x - p \cdot \cos(A)}{q} \tag{10}
\]
Which when substituted in equation 9 gives,
\[
x = p \cdot \sin(A) + q \cdot \frac{\sqrt{1 - (x - q \cdot \cos(A))^2}}{q^2} \tag{11}
\]
Solving equation 11 for \(A\) gives,
\[
A = \arctan \left[\frac{2 \cdot y \cdot p \pm \sqrt{2 \cdot (y^2 \cdot q^2 + x^2 \cdot p^2 - x^2 \cdot y^2 + x^2 \cdot q^2 + p^2 \cdot y^2 + p^2 \cdot q^2) - x^4 - p^4 - y^4 - q^4}}{(x^2 - q^2 + y^2 + p^2 + 2 \cdot x \cdot p)} \right]
\]
By substituting values in the equations for \(A\) and \(B\) you can determine whether to use the negative or positive roots.

Figure 2, Solution 1

Positive root for \(A\)
Negative root for \(B\)
For most applications solution 1 will be the one used.

Having calculated the angle B, one small adjustment needs to be made. An angle of 0 degrees at B represents the situation when the outer arm is lined up exactly with the inner arm. Our calculations assume the angle B is the angle between the outer arm and the X axis. To adjust for this we simply subtract the angle A from B.

Program Implementation

This technique breaks the move up into small, 10 ms pieces, and commands a series of moves to each successive position. MotionBASIC® would normally turn each piece of the move into a trapezoidal move with an acceleration, cruise and deceleration. In our case we do not want the axes to decelerate to a stop between each piece of the move so we will command each piece with a zero acceleration and deceleration time. Since the speed change from each piece of the move to the next is quite small, instantaneous acceleration is not a problem during the move itself. It is however a problem at the start and end of the move when the axes would have to accelerate to and from rest instantaneously.

To avoid having these accelerations become a problem, you need to turn velocity feed forward off by setting KVFR@=0 for both axes. You will also need to set ACL.MAXR@=0 and DCL.MAXR@=0 for both axes. Finally you will need to set the KP@ value to provide a reasonable, identical position gain for both axes. A reasonable value for position gain is 1 inch per minute/mil. You may use a higher gain for more responsive systems or a lower gain for heavier, more sluggish systems.

Position gain \(G = \frac{395 \cdot KP@}{LOOP.RATE@ \cdot VLTC@} \) inches per min/mil

\[
KP@ = \frac{G \cdot LOOP.RATE@ \cdot VLTC@}{395} \%
\]
Depending on the position gain you use and the characteristics of your mechanism, you may need to adjust or disable PERR.MAX@ position error checking to avoid nuisance position error faults. It is very important for accuracy to have both axes with identical position gains.

Program Listing

```
POWERUP:
  MP.CONFIG
  A~={1}
  B~={2}
  BOTH~={1}+{2}
  ---- set up the axis parameters for interpolation
  ACL.MAX@(BOTH~)=0
  DCL.MAX@(BOTH~)=0
  POS.GAIN=1
  KVF@(BOTH~)=0
  KP(A~)=POS.GAIN*LOOP.RATE@*VLTC(A~)/395
  KP(B~)=POS.GAIN*LOOP.RATE@*VLTC(B~)/395
  ---- initialize some variables
  PROG.INIT
  ENABLE   'enable the axes
  ---- get the current joint angles and calculate
  ' the corresponding X and Z positions
  GET.XZ.POSITION
  ---- set first position and move to it
  ' (S! is the speed in inches/second)
  X2!=20 :Z2!=0 :S!=1 :MOVE.TO
  ---- set second position and move to it
  X2!=20 :Z2!=-10 :S!=1 :MOVE.TO
  WAIT UNTIL DSP.DONE@(BOTH~) AND IN.POS@(BOTH~)
  MODE@(BOTH~)=0
END

GET.XZ.POSITION:
  A1!=POS.ACT@(A~)*2*PI!/3600       'convert to radians
  B1!=A1!+(POS.ACT@(B~)*2*PI!/3600) 'convert to radians
  X1!=P!*COS(A1!)+Q!*COS(B1!)       'calculate X
  Z1!=P!*SIN(A1!)+Q!*SIN(B1!)       'calculate Y
  RETURN

SOLVE.MOVE:
  XD!=X2!-X1!                   'X distance
  ZD!=Z2!-Z1!                   'Z distance
  PATH.LEN!=SQR(XD!^2+ZD!^2)    'vector path length
  DELTA!=S!*UPD.TIME.S!        'distance increment along vector
                              'per update
  N&=ABS(INT(PATH.LEN!/DELTA!)) 'number of updates
  DELTA.X!=XD!/N&               'Increment on X per update
  DELTA.Z!=ZD!/N&               'Increment on Z per update
  RETURN

ENABLE:
  ---- clear faults and enable
  OTL.FWD@=0:OTL.REV@=0:AFault@=0:FAULT@=0:WAIT 300:MODE@=5
  RETURN
```
Coordinate Transformations for a Two Axis SCARA Robot

MOVE TO:
 SOLVE.MOVE 'set up the interpolator
 X!=X1! :Z!=Z1! 'set interpolator output to
 X1!=X2! :Z1!=Z2! :COUNT&=1 'set start position for next move
 WHILE INKEY$="" AND COUNT&<=N&
 IF COUNT&=N& THEN
 X!=X2! :Z!=Z2! 'make sure we hit the end position
 ELSE
 X!=X!+DELTA.X! 'Increment X and Z along the vector
 Z!=Z!+DELTA.Z!
 ENDIF
 ENDWHILE
 RETURN

 CALC.AB:
 KB1!=2*Z!*Q!
 KB2A!=Z*(Z!^2*Q!*2+X!^2*P!*2-X!^2*Z!*2+X!^2*Q!*2+P!*2+Z!*2+P!*2*Q!*2)
 KB2B!=-X!*4-P!*4-Z!*4-Q!*4
 KB3!=X!*2-P!*2+Z!*2+Q!*2+2*X!*Q!
 KA1!=2*Z!*P!
 KA3!=X!*2-Q!*2+Z!*2+P!*2+2*X!*P!
 B!=2*ATN((KB1!-SQR(KB2A!+KB2B!))/KB3!)
 A!=2*ATN((KA1!+SQR(KB2A!_KB2B!))/KA3!)
 'convert A B to tenths of a degree
 AXIS.VAR@(A~)=3600*A!/(2*PI!)
 AXIS.VAR@(B~)=3600*(B!+PI!-A!)/(2*PI!)
 RETURN

 PROG.INIT:
 PI!=3.14159
 HALF.PI!=PI!/2
 UPD.TIME.MS=10 'ms
 UPD.TIME.S!=UPD.TIME.MS/1000 'seconds
 P!=12 'these set the geometry of the robot
 Q!=18
 RETURN